Narodziny mechaniki kwantowej
Rozkład Plancka dla różnych temperatur. Moc (kJ/s) promieniowana przez ciało o powierzchni 1m2 do pełnego kąta bryłowego w zakresie długości fal 1 nm.
14 grudnia 1900 Max Planck przedstawił uzasadnienie wzoru przedstawionego 19 października 1900 roku i będącego poprawną wersją wzoru Wiena. Poprawka Plancka polegała na odjęciu od mianownika ułamka liczby 1. W uzasadnieniu Planck przyjął, że oscylatory wytwarzające promieniowanie cieplne mogą przyjmować tylko pewne wybrane stany energetycze, a emitowane przez nie promieniowanie może być wysyłane tylko określonymi porcjami[1].
Zaproponowny rozkład został nazwany potem na jego cześć rozkładem Plancka:
gdzie:
Rozkład w zależności od długości fali:
Gdzie
W celu wyjaśnienia promieniowania ciała doskonale czarnego Planck wprowadził nową stałą fizyczną, nazywaną obecnie stałą Plancka oznaczoną jako h. Datę 14 grudnia 1900 roku uważa się za narodziny mechaniki kwantowej. Stała Plancka okazała się kluczowym parametrem występującym w wielu równaniach opisujących zjawiska w skali atomowej. Późniejsze prace doprowadziły do sformułowania nowej statystyki Bosego-Einsteina, z której można było wyprowadzić rozkład Plancka. Porcje promieniowania cieplnego nazwano fotonami, a różnicom stanów energii nadano nazwę kwantów. Właściwość oscylatorów polegającą na przyjmowaniu tylko wybranych stanów energetycznych nazwano kwantyzacją poziomów energetycznych.
Wnioski
Maksimum funkcji intensywności promieniowania opisuje prawo przesunięć Wiena
podobną zależność ma strumień promieniowania emitowanego w jednej sekundzie przez ciało doskonale czarne
W astronomii prawo Wiena pozwala wyznaczyć efektywną temperaturę powierzchniową gwiazdy i związać ją z barwą gwiazdy. Wypełniające cały Wszechświat promieniowanie tła pozostałe po Wielkim Wybuchu ma widmo takie samo jak promieniowanie ciała doskonale czarnego o temperaturze 2,7 K. Zgodnie z hipotezą Stephena Hawkinga czarna dziura emituje promieniowanie podobnie do ciała doskonale czarnego, co prowadzi do jej powolnego parowania.
Prawo Stefana-Boltzmanna opisuje całkowitą moc wypromieniowywaną przez ciało doskonale czarne w danej temperaturze:
gdzie
Wyprowadzenie
Prawo Stefana-Boltzmanna można wyprowadzić korzystając z rozkładu Bosego-Einsteina dla fotonów zamkniętych w pudełku o objętości V. Średnia energia fotonów w danej temperaturze T wynosi:
gdzie
ω - częstotliwość fotonów
Podstawienie wartości
daje
Wartością tej całki jest:
gdzie
Powyższy wynik jest równoważny prawu Stefana-Boltzmann
Mostki transformatorowe
Na Rys. 7 widać analogię pomiędzy układem kompensatora i kompensatora transformatorowego. W obydwu układach stan równowagi można osiągnąć przez zmianę wartości dowolnego ze źródeł napięcia.
Taką samą zasadę stosuje się więc w mostkach transformatorowych. Na Rys. 8 pokazano mostek, w którego skład wchodzą dwa transformatory. Stan równowagi można osiągnąć poprzez zmianę napięcia w dowolnej gałęzi mostka, co osiągane jest zazwyczaj poprzez zmianę ilości zwojów w uzwojeniach (za pomocą suwaka - podobnie jak w autotransformatorze):
Mostki transformatorowe posiadają kilka zalet w porównaniu z mostkami impedancyjnymi. Pojemności pasożytnicze mają o wiele mniejszy wpływ i nie praktycznie nie wpływają na stan równowagi mostka. Również czułość jest znacząco większa. Niemniej jednak, mostek transformatorowy musi zostać odpowiednio zaprojektowany i starannie wykonany aby móc skorzystać z tych zalet, co prowadzi do znacznego zwiększenia ceny takiego mostka.
Jedną z największych zalet mostków transformatorowych jest galwaniczne odizolowanie układu zasilającego, impedancji mierzonych oraz układu napięcia wyjściowego wzajemnie od siebie. Jest to szczególnie ważne w przypadku układów zasilanych wysokim napięciem, które może być potencjalnie groźne dla człowieka. Odizolowanie galwaniczne połączone z możliwością obniżenia napięcia poprzez wbudowany obwód transformujący umożliwia wykonywanie pomiarów w warunkach niedostępnych dla innych metod pomiarowych.
Mostek Wiena
Rys. 4. Mostek Wiena
Zrównoważenie mostka Wiena następuje przy spełnieniu obydwu następujących warunków:
oraz
gdzie ω = 2·π·f (f - częstotliwość napięcia zasilającego).
Jak widać punkt równowagi zależy od częstotliwości. Dlatego też, mostek Wiena jest używany raczej rzadko do pomiaru pojemności, ale jest stosowany jako element układów oscylacyjnych, ponieważ:
Mostek jest równoległym połączeniem co najmniej dwóch dzielników napięcia. Napięciem wyjściowym mostka jest napięcie pomiędzy punktami wyjściowymi dzielników napięcia (tak jak to zilustrowano schematycznie na Rys. 1 po prawej stronie).
Jedną z największych zalet układu mostkowego jest to, że może on zostać doprowadzony do punktu równowagi - napięcie wyjściowe mostka zrównoważonego jest równe zero, co jest często wykorzystywane w mostkach pomiarowych. Obecnie mostki pomiarowe są coraz rzadziej wykorzystywane z uwagi na nieustający rozwój stosunkowo tanich i coraz dokładniejszych wszelkiego rodzaju mierników cyfrowych. Niemniej jednak, w powszechnym użyciu są również mostki niezrównoważone pracujące nie tylko w punkcie równowagi.
Układy mostkowe mogą być zbudowane również elementów nieliniowych, takich jak np. diody prostownicze. Zasilenie mostka prostowniczego, zwanego powszechnie mostkiem Graetza, napięciem przemiennym powoduje wyprostowanie takiego napięcia. Mostki prostownicze mogą być stosowane do prostowania napięcia trójfazowego, a nawet wielofazowego.