AM2 e 11 2007 TEST1 ENG


13.11.07

CALCULUS II

TEST I

NAME...........................................................................................................

1.(7p) Let z = x2 + 2 y2 - 2 , draw two level curves:

(a) one that passes through the point (1,1)

(b) one that lies on the xy-plane.

2.(7p) Show that the limit

0x01 graphic

does not exist.

3. (7p) Show that 0x01 graphic
is a solution of the following differential equation

uxy = 4xy u.

4. (7p) Use the chain Rule to find the partial derivatives 0x01 graphic
of

0x01 graphic
f(x,y) = x ln(x + 2y), x = t2 + s, y = t s

5. (8p) Find all the critical points of f(x,y) = 9xy - x3 - y3.

6. (8p) Find the largest and smallest value of

f(x,y) = x2 - 2y2 - 6x

in the circle 0x01 graphic
.

7. (6p) True or False?

(a) Let f be defined on some neighbourhood of point (0,0) and both of the partial derivatives fx(0,0), fy(0,0) exist, then the function f is continuous ?

(b) If 0x01 graphic
as 0x01 graphic
along every straight line through (a,b), then

0x01 graphic
.



Wyszukiwarka

Podobne podstrony:
AM2 e 01 2007 TEST2 ENG
am2 pd 11
2Chemia(wykłady) 26 11 2007
ZNSA spis treści 11 2007
Izolacyjnosc ogniowa lekkich przegrod warstwowych calosc 16[1] 11 2007
Hakin9 31 (11 2007) PL
Podstawy woiągów i kanalizacji 15.11.2007, STUDIA, Polibuda - semestr IV, Podstawy Woiągów i Kanaliz
Immunologia - prelekcja07 12.11.2007, IMMUNOLOGIA
Immunologia - prelekcja08 19.11.2007, IMMUNOLOGIA
material na egzamin z pedagogiki, Pedagogika 29.11.2007, P
Etyka, Etyka 9[1].11.2007, Etyka 9
cwiczenia 3 9.11.2007, cwiczenia - dr skladowski
chemia 25.11.2007, Edukacyjnie, K, Kosmetologia, Chemia kosmetyczna
wyklad 7 26.11.2007, wyklady - dr krawczyk

więcej podobnych podstron