PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA INSTYTUT POLITECHNICZNY |
|||
Laboratorium Podstaw Elektrotechniki
Ćwiczenie nr 7
Temat: Poprawianie współczynnika mocy |
|||
Rok akademicki: II
Studia dzienne
Nr grupy: 1
|
Wykonawcy:
1. Sebastian Kubala 2. Łukasz Baumgart 3. Marcin Miondowicz |
Data |
|
|
|
Wykonania ćwiczenia |
Oddania sprawozdania |
|
|
|
|
|
|
Ocena: |
|
Uwagi:
|
1. Wyznaczanie współczynnika mocy układu przed i po kompensacji.
1.1. Schemat połączeń:
1.2. Tabela wyników.
C |
z pomiarów |
z obliczeń |
|||||||
|
U |
I |
P |
S |
cos |
w |
tg(w) |
Qw |
Qc |
F] |
[V] |
[A] |
[W] |
[VA] |
- |
[0] |
- |
[var] |
[var] |
0 |
100 |
0,48 |
3 |
48 |
0,063 |
86 |
16 |
47,9 |
0 |
|
120 |
0,58 |
4 |
69,6 |
0,057 |
87 |
17,4 |
69,5 |
0 |
|
140 |
0,68 |
5 |
95,2 |
0,053 |
87 |
19 |
95,1 |
0 |
|
160 |
0,78 |
7 |
124,8 |
0,056 |
87 |
17,8 |
124,6 |
0 |
10 |
100 |
0,184 |
2 |
18,4 |
0,109 |
84 |
9,1 |
18,3 |
31 |
|
120 |
0,23 |
4 |
27,6 |
0,145 |
82 |
6,8 |
27,3 |
45 |
|
140 |
0,26 |
5 |
36,4 |
0,137 |
82 |
7,2 |
36,1 |
62 |
|
160 |
0,29 |
6 |
46,4 |
0,129 |
83 |
7,7 |
46 |
80 |
20 |
100 |
0,18 |
2 |
18 |
0,111 |
-84 |
8,9 |
-17,9 |
63 |
|
120 |
0,23 |
3 |
27,6 |
0,109 |
-84 |
9,1 |
-27,4 |
90 |
|
140 |
0,27 |
4 |
37,8 |
0,106 |
-84 |
9,4 |
-37,6 |
123 |
|
160 |
0,28 |
5 |
44,4 |
0,112 |
-84 |
8,9 |
-44,5 |
161 |
30 |
100 |
0,528 |
2 |
52,8 |
0,038 |
-87 |
26,4 |
-52,8 |
94 |
|
120 |
0,64 |
3 |
76,8 |
0,039 |
-87 |
25,6 |
-76,7 |
136 |
|
140 |
0,72 |
4 |
100,8 |
0,040 |
-87 |
25,2 |
-100,7 |
185 |
|
160 |
0,8 |
5 |
128 |
0,039 |
-87 |
25,6 |
-127,9 |
241 |
1.3. Obliczenia.
a) Na podstawie pomiarów dokonać obliczeń: współczynnika mocy układu, mocy biernej wypadkowej Qw oraz mocy biernej pojemnościowej baterii kondensatorów QC, a wyniki zamieścić w tabeli 2.1.3 (zwrócić uwagę na znak mocy pojemnościowej oraz zmianę znaku mocy układu w przypadku jego przekompensowania).
- moc pozorna odbiornika:
- moc czynna odbiornika:
- moc bierna pobrana przez odbiornik przy braku kompensacji:
- wypadkowa moc bierna:
,
gdzie: - kąt miedzy prądem a napięciem po kompensacji
- moc bierna pobrana przez kondensator kompensujący:
b) Narysować wykresy wskazowe napięć i prądów dla wartości napięć U (, 140) V przy C = (0, 10, 20, 30, 40) F.
c) Obliczyć wartość pojemności potrzebnej do całkowitej kompensacji dla poszczególnych wartości napięć zasilania. Obliczenia zestawić w tabeli:
U |
C |
[V] |
F] |
100 |
15,2 |
120 |
15,3 |
140 |
15,4 |
160 |
15,5 |
Wartość pojemności potrzebnej do całkowitej kompensacji wyliczyłem ze wzoru:
2. Wnioski:
Wraz ze wzrostem pojemności dołączanego kondensatora kompensującego, a co się z tym wiąże - zwiększaniem współczynnika mocy ( - rośnie, - maleje) maleje prąd pobierany przez układ ze źródła. Maleje jednak tylko do czasu, gdy nie zostanie przekroczona pewna wartość pojemności kondensatora kompensującego, dla której zachodzi najlepsza kompensacja. W naszym ćwiczeniu była to wartość zbliżona do ok. 20 [μF] a prąd pobrany ze źródła osiągnął minimalną wartość (I = 0,18A dla napięcia U=100V).
Po przekroczeniu tej wartości układ znajdować się będzie w stanie przekompensowania, co dokładnie widać w przedstawionej tabelce.
Moc bierna pobierana przez układ w czasie kompensacji również maleje na rzecz rosnącej mocy biernej wytworzonej na kondensatorze kompensującym, a po przekroczeniu najlepszej kompensacji zaczyna znowu rosnąć. Suma mocy biernej układu i mocy biernej kondensatora kompensującego ma wartość stałą. Przy braku kompensacji moc bierna układu osiąga maksymalną wartość.