EKONOM IiE DZ


EKONOMETRIA - IiE - DZ

Imię i nazwisko: ................................................................ Punkty: ............. Ocena: .........

Zad. 1. Postanowiono skonstruować model, by sprawdzić, na ile wynik testu zdolności manualnych i płeć pracownika pozwalają przewidywać jego wydajność. Przeprowadzono test u ośmiu kobiet i siedmiu mężczyzn. Wydajność mierzono na skali od 0 do 10 (0 oznacza osobę zupełnie nieproduktywną), a wyniki testu na skali od 0 do 100. Szacowany model miał postać:

0x01 graphic

Gdzie Y - wydajność pracy

X - wynik testu zdolności manualnych

Z - zmienna jakościowa przyjmująca wartości 0 dla kobiet, 1 dla mężczyzn.

Na podstawie zebranych obserwacji otrzymano następujące wyniki:

ANALIZA WARIANCJI

 

df

SS

MS

F

Regresja

2

86,98148

43,49074

70,34949

Resztkowy

12

7,418517

0,61821

Razem

14

94,4

 

 

 

Współczynniki

Błąd standard

t Stat

Wartość-p

Przecięcie

-1,956

0,707

-2,768

0,017

test

0,120

0,010

11,859

5,52E-08

płeć

-2,181

0,450

-4,842

0,0004

  1. Podaj równanie modelu teoretycznego.

  1. O czym informuje liczba 0.12 ?

  1. Jak należy interpretować liczbę - 2.181?

  1. Czy przyjmując poziom istotności α = 0.01 mamy podstawy, by uznać, że uwzględnione w modelu zmienne mają istotnie wpływ na kształtowanie wydajności pracy?

  1. Oceń dobroć dopasowania modelu do obserwacji

0x08 graphic
Zad. 2. Wytwórnia wody mineralnej „Akwa” skonstruowała trend opisujący zmiany wielkości sprzedaży wody mineralnej (w tys. l) w kolejnych kwartałach lat 2005 - 2007 i otrzymała równanie (t = 1, dla I kw. 2005, t = 2 dla II kw. 2005 itd.):

  1. Naszkicuj wykres powyższego trendu

  1. Liczba 140,2 w trendzie informuje, że

  1. Na podstawie trendu należy się spodziewać, że w I kwartale roku 2008 wielkość sprzedaży zmieni się w stosunku do IV kwartału roku 2007 o ........................................ %.

Zad. 3. Postanowiono skonstruować model wykładniczy opisujący zmiany wydatków pewnej rodziny na kulturę w kolejnych latach (t = 1, 2,... ). Zebrano odpowiednie obserwacje i oszacowano parametry pomocniczego modelu liniowego otrzymując równanie:

ln(BENZt) = 2 + 0.025t

  1. Model oryginalny po oszacowaniu ma postać: 3. A jego wykres przedstawia się następująco:

...................................................................................

  1. Liczba 0.025 informuje, że

Zad. 4. Postanowiono skonstruować model liniowy opisujący zależność kosztu całkowitego (Y - w tys. zł) w przedsiębiorstwie „Las” w zależności od wielkości skupu runa leśnego (X - w tonach). Poniższa tabelka przedstawia zebrane obserwacje. Na podstawie tych obserwacji oszacowano model „ogólny” (oparty na wszystkich obserwacjach) oraz dwa podmodele: A i B.

Skup (X)

1

1

2

4

5

8

8

10

Koszt (Y)

9,5

10,5

12

16

17,5

28,8

22,4

25

Reszty

PODMODEL A : 0x01 graphic

PODMODEL B: 0x01 graphic

MODEL OGÓLNY: 0x01 graphic

Korzystając z powyższych informacji zweryfikuj hipotezę, że model „globalny” jest homoskedastyczny, tzn. spełnia założenie o stałości wariancji: 0x01 graphic
.

0x08 graphic
0x08 graphic
Uwaga: poniżej podana jest odpowiednia wartość krytyczna Fα . W nawiasie uzupełnij dla jakich stopni swobody wartość ta została wyszukana:

F (α = 0,05; , ) = 19,00

Zad. 5. Postanowiono skonstruować trend, opisujący zmiany liczby dzieci w przedszkolach w pewnym mieście w latach 1993 - 2004. Rozważano dwie alternatywne postacie modelu: globalny trend liniowy, którego oszacowanie przedstawia wydruk (1) oraz liniowy trend segmentowy (punkt zwrotny t* = 6 dla roku 1998), którego oszacowanie przedstawia wydruk (2).

Wydruk (1) - model globalny

 

df

SS

Regresja

2

30,51

Resztkowy

10

Razem

12

100,7

Współczynniki

Błąd standardowy

t Stat

Wartość-p

Przecięcie

15,01

1,63

9,20

3,387E-06

Czas

0,461

0,22

2,08

0,063699

  1. Model globalny opisujący zmiany liczby dzieci w przedszkolach ma postać:

  1. Współczynnik R2 dla modelu globalnego przyjmuje wartość , co oznacza, że

Wydruk (2) - model segmentowy

 

df

SS

Regresja

4

93,80

Resztkowy

6,91

Razem

12

100,71

 

Współczynniki

Błąd standardowy

t Stat

Wartość-p

Przecięcie

0

#N/D!

#N/D!

#N/D!

Zmienna t 1

1,27

0,29

4,32

0,0025

Zmienna Z1

13,97

0,97

14,33

5,4832E-07

Zmienna t2

1,66

0,18

9,46

1,2874E-05

Zmienna Z2

3,225

1,62

1,99

0,0815

  1. Model segmentowy przedstawiający zmiany liczby dzieci w przedszkolach w badanym okresie ma postać:

  1. Współczynnik kierunkowy w pierwszym segmencie ma wartość .............. i informuje, że

  1. Czy przyjmując poziom istotności α = 0,01 zmiany liczby dzieci w przedszkolach w tym segmencie uznać należy za istotne? Odpowiedź uzasadnij.

  1. Przyjmując poziom istotności = 0.05 sprawdź, czy rok 1998 może być uznany za istotny punkt zwrotny badanej tendencji rozwojowej:

Uwaga: poniżej podana jest odpowiednia wartość krytyczna Fα . W nawiasie uzupełnij dla jakich stopni swobody wartość ta została wyszukana:

0x08 graphic
0x08 graphic

F = ------------------------------

F ( = 0.05, , ) = 3.88

Wniosek:

Zad. 6. Postanowiono skonstruować model dwurównaniowy opisujący kształtowanie produkcji pewnego kosmetyku (PROD) oraz jego ceny (CENA) uwzględniając dodatkowo przeciętne dochody jego potencjalnych nabywców (DOCHOD). Postać hipotetyczna modelu strukturalnego opisana jest układem równań:

0x01 graphic

  1. Odpowiednio „uporządkuj” powyższy model i podaj:

0x01 graphic
0x01 graphic

0x01 graphic
0x01 graphic

  1. Model ten przekształcono do postaci zredukowanej i oszacowano parametry tej postaci otrzymując równania:

0x01 graphic

Zapisz macierz Π dla tego modelu.

0x01 graphic

  1. Na podstawie oszacowania macierzy Π odtwórz oceny parametrów postaci strukturalnej i zapisz tę postać.

  1. Ocena parametru β1 wynosi ................. i informuje, że

Liczba ta to mnożnik .............................................................

  1. Liczba 0,2 w modelu zredukowanym to mnożnik ....................................................................... i informuje, że

Zad. 6. Postanowiono skonstruować model opisujący kształtowanie sprzedaży pewnego kosmetyku (zmienna Y). Jako potencjalne zmienne objaśniające przyjęto cenę kosmetyku (X1) oraz przeciętne dochody w sektorze uspołecznionym (X2). Poniższa tabelka przedstawia wartości współczynników korelacji między tymi trzema zmiennymi.

Sprzedaż

Cena

Cena

-0,7

Dochody

0,9

-0,8

  1. Wypisz kombinacje potencjalnych zmiennych objaśniających, które można utworzyć z rozważanych zmiennych objaśniających i oblicz ich integralną pojemność informacyjną.

  1. Która z rozważanych kombinacji zmiennych jest optymalna?

4

28 stycznia 2008

0x01 graphic



Wyszukiwarka

Podobne podstrony:
EKONOM IiE zaocz
IiE DZ
EKONOM IiE zaocz odpowiedzi 20120218
EKONOM IiE zaocz odpowiedzi
ustawy ppg, ustawa o specjalnych strefach ekonomicznych, Dz
EKONOMICZNE ASPEKTY ZARZ DZ, Zarządzanie projektami, Zarządzanie(1)
Dz bud 4
Spoleczno ekonomiczne uwarunkowania somatyczne stanu zdrowia ludnosci Polski
Ekonomia konspekt1
EKONOMIKA TRANSPORTU IX
Ekonomia II ZACHOWANIA PROEKOLOGICZNE
Wyrazy z s,z c,dz
Ekonomia9

więcej podobnych podstron