Individual inputΪta no projekt

Mine Planning Project

xxxxx

AGH University of science and Technology

Faculty of Mining and Geoengineering

Management and production engineering

Cracow 2015


Individual input data no.: 2

No. Name Unit Value
1 Length of coalfield along strike, Ls [m] 4000
2 Horizon depth, H [m] 600
3 Horizon interval, h [m] 150
4 Single longwall saleable daily production, Sld [Mg/d] 6000
5 Overall produktivity, Po [Mg/emp/a] 900

Contents:

  1. Introduction

  2. Mine model layout

  3. Reserves estimation

  4. Mine construction schedule

  5. Mine produkction schedule

  6. CAPEX estimation

  7. OPEX estimation

  8. Evaluation of mine planning project efficiency

  9. Sensitivity analysis

  10. Summary – basic technical and economical parameters


Ad I

Indtroduction

Introductory information and data:

Enterprise: underground hard coal mine

Method of mining: longwall caving

Dip angle deposit, Ξ± [degrees]: 5

Number of seams: 3 (enumerated: I, II, III)

Thickness of seam I: 3 [m]

Thickness of seam II: 3 [m]

Thickness of seam III: 4 [m]

Methane emission: 11 [m3/Mg]

Water inflow: 3 [m3/min]

Number of longwalls, n: 2

Number of working days, Nd [d/a]: 250

Annual saleable production from longwalls, Se [MMg/a]:

Se = 10 -6nSldNd

n = 2

Sld = 6000 [Mg/d]

Nd = 250

Se = 10 -6 βˆ™ 2 βˆ™ 6000 βˆ™ 250 = 3 [MMg/a]

Annual saleable production from development workings, Sd [MMg/a]:

Sd = 0,1Se

Sd = 0,1 βˆ™ Se = 0,1 βˆ™ 3 = 0,3 [MMg/a]

Annual saleable production of the mine, S [MMg/a]:

S = Se + Sd

S = 3 + 0,3 = 3,3 [MMg/a]

Overall manpower, N [man]:


$$N = \ \frac{10^{6}S}{P_{o}}$$


$$N = \ \frac{10^{6} \bullet 3,3}{900} = 3666,67\ \approx 3667\ \lbrack man\rbrack$$

Underground manpower, Nu [man]:

Nu = 0,8N

N = 0,8 βˆ™ 3667 = 2933,6 β‰ˆ 2934 [man]

Surface manpower, Ns [man]:

Ns = 0,2N

Ns = 0,2 βˆ™ 3667 = 733,4 β‰ˆ 734 [man]

Yield coefficient, u:

u = 0,8

Daily run-of-mine production, Wd [ThMg/d]:


$$\ W_{d} = \frac{1000S}{uN_{d}}$$


$$W_{d} = \frac{100 \bullet 3,3}{0,8 \bullet 250} = 16,5\ \lbrack\frac{\text{ThMg}}{d}\rbrack$$

Underground productivity, Pu [Mg/man/d]:


$$P_{u} = \frac{1000W_{d}}{N_{u}}$$


$$P_{u} = \frac{1000 \bullet 16,5}{2934} = 5,62\ \lbrack\frac{\frac{\text{Mg}}{\text{man}}}{d}\rbrack$$

Ad II

Mine model layout

  1. Main shaft

  2. Pit bottom of main shaft

  3. Main transportation crosscut

  4. Main transportation drift

  5. Inclined drift

  6. Main ventilation drift

  7. Ventilation blind pit

  8. Main ventitalion crosscut

  9. Pit bottom of air shaft

  10. Air shaft

Main shaft depth, Dms [m]:

Dms = H + 20

Dms = 600 + 20 = 620 [m]

Air shaft depth, Das [m]:

Das = H – h + 10

Das = 600 – 150 + 10 = 460 [m]

Ad III

Reserves estimation

Seam number Area [m2] Thickness [m2] Volume [Mm3] Density [Mg/m3] Proved reserves [MMg] Coefficient ƞav Saleable reserves [MMg]
I 6884240 3 20,653 1,3 26,849 0,6 16,109
II 5966320 3 17,899 1,3 23,269 0,6 13,961
III 5048440 4 20,194 1,3 26,252 0,6 15,751
Total 17899000 10 58,745 76,369 45,821

Area – calculated for every seam by multiplication of coal field length along strike by coal seam length along dip.

Average coefficient of reserves recovery, ƞav; let ƞav=0,6

Index of useful capacity of deposit, zu [Mg/m2]:

$z_{u} = \frac{1,3\Sigma m_{i}}{\text{cosΞ±}}\eta_{\text{av}}$= $\frac{1,3 \bullet (3 + 3 + 4)}{cos5} \bullet 0,6 = 7,83\ \lbrack\frac{\text{Mg}}{m^{2}}\rbrack$

where:

mi- i-th seam thickness [m],

Ξ± – dip angle [degrees]


Ad IV

Mine construction schedule

Name Unit Depth/Length Driving through Rate of advance [m/mth] Time [mth] Years
Preparatory workings before main shaftsinking 6
Main shaft sinking (1) [m] 620 stone 60 10,4
Main shafr pit bottom inlet stone 3
Driving the main transportation crosscut (3) [m] 50 stone 50 1
Crossing (3/4L) [m] stone/coal 0,25
Driving the main transportation drift (4L) [m] 1000 coal 150 6,7
Crossing (4L/5L) [m] coal 0,25
Driving the inclined drift I (5L) [m] 1720 coal 120 14,35
Crossing (5L/6L) [m] coal 0,25
Preparatory workings before air shaft sinking 4
Air shaft sinking (10) [m] 460 stone 60 7,6
Air shaft pit bottom inlet stone 2
Driving the main ventilation crosscut (8) [m] 50 stone 50 1
Crossing (8/6L) [m] stone/coal 0,25
Driving the main ventilation drift (6L) [m] 1000 coal 150 6,7
Driving the main panel entry for longwall I [m] 1000 coal 200 5
Driving the tail panel entry for longwall I [m] 1000 coal 200 5
Driving the set-up entry for longwall I [m] 300 coal 100 3
Longwall I face equipment installation 3
Start up of longwall I extraction β†’
Driving the main transportation drift (4R) [m] 1000 coal 150 6,7
Crossing (4R/5R) [m] coal 0,25
Driving the inclined drift II (5R) [m] 1720 coal 120 14,35
Driving the main ventilation drift (6R) [m] 1000 coal 150 6,7
Crossing (5R/6R) [m] coal 0,25
Driving the main panel entry longwall II [m] 1000 coal 200 5
Driving the tail panel entry for longwall II [m] 1000 coal 200 5
Driving the set-up entry for longwall II [m] 300 100 3
Longwall II face equipment installation 3
Start up of longwall II extraction β†’

Ad V

Mine production schedule

Seam number Saleable reserves [MMg] Annual saleable production [MMg/year] Production period [years] Year Year
I 16,109 3,3 5,4
II 13,961 3,3 4,3
III 15,751 3,3 4,8

Ad VI

CAPEX estimation

  1. Undegrund part

  1. Expenditure on sinking, Iu1 [MPLN]

No Specification Drive through Size Unit cost [PLN/unit] Total [MPLN]
unit amount
1 Main shaft sinking (1) stone [m] 620 340
2 Driving the main shaft pit bottom inlet stone 1
3 Air shaft sinking (10) stone [m] 460 250
4 Driving the air shaft pit bottom inlet stone 1
Total 327,8
  1. Expenditure on driving main development openings, Iu2 [MPLN]

No Specification Drive through Size Unit cost [ThPLN/unit] Total [MPLN]
unit amount
1 Driving the main cross transportation (3) stone [m] 50 25
2 Crossing (3/4L) stone/coal [m]
3 Driving the main transportation drift (4L) coal [m] 1000 15
4 Crossing (4L/5L) coal [m]
5 Driving the inclined drift I (5L) coal [m] 1720 12
6 Crossing (8/6L) coal [m]
7 Driving the main cross ventilation opening (8) coal [m] 50 25
8 Crossing (8/6L) stone/coal [m]
9 Driving the main ventilation drift (6L) coal [m] 1000 15
10 Driving the main longwall I panel entry coal [m] 1000 10
11 Driving the tail longwall I panel entry coal [m] 1000 10
12 Driving the set-up entry for longwall I coal [m] 300 15
13 Driving the main transportation drift (4R) coal [m] 1000 15
14 Crossing (4R/5R) coal [m]
15 Driving the inclined drift II (5R) coal [m] 1720 12
16 Driving the main ventilation drift (6R) coal [m] 1000 15
17 Crossing (5R/6R) coal [m]
18 Driving the main longwall II panel entry coal [m] 1000 10
19 Driving the tail longwall II panel entry coal [m] 1000 10
20 Driving the set-up entry for longwall II coal [m] 300 15
Total 153,08
  1. Expenditure on driving pump room and other chambers at pit bottoms, Iu3 [MPLN]


$$I_{u3} = aW_{d} + b + c\sqrt{Q_{w}} + dQ_{w}$$

where:

Wd – daily run-of-mine production [ThMg/d]

Qw – natural water inflow in the mine [m3/min

For the gassy mine without water problems: a = 4,73; b = 7,7; c = 2,1; d = 2,7


$$I_{u3} = 4,73 \bullet 16,5 + 7,7 + 2,1 \bullet \sqrt{3} + 2,7 \bullet 3 = 97,48\lbrack MPLN\rbrack$$

  1. Expenditure on underground equipment (in gassy mine), Iu4 [MPLN]


$$I_{u4} = \left( \frac{40,5}{z_{u3}} + 16,2 \right)W_{d}$$

where:

Zu3- index of useful capacity of deposit [Mg/m2]


$$I_{u4} = \left( \frac{40,5}{7,83} + 16,2 \right) \bullet 16,5 = 352,64\ \lbrack MPLN\rbrack$$

  1. Expenditure on mechanization and automation (for gassy mine), Iu5 [MPLN]


Iu5 = 6, 9Wdβ€…+β€…31, 5

Wd – daily run-of-mine production [ThMg/d]


Iu5 = 6, 9β€…β€’β€…16, 5β€…+β€…31, 5 = 145, 35Β [MPLN]

Total expenditure on underground workings:


$$I_{u} = \sum_{i = 1}^{i = 5}I_{\text{ui}}$$


Iu = 327, 8β€…+β€…153, 08β€…+β€…97, 48β€…+β€…352, 64β€…+β€…145, 35 =  1076, 35Β [MPLN]

  1. Surface part

  1. Expenditures on surface installations (e.g. winding installations, shafy head gear setting, construction of winding machine, processing plant, housing and other pit top buildings, etc.), Is1 [MPLN]

Is1 = 54 MPLN

  1. Expenditure for surface coal processing and handling installations, Is2 [MPLN]


Is2 = 0, 45Wd(vjbKjbβ€…+β€…CmKjmβ€…+β€…MmKjs)


Is2 = 0, 45β€…β€’β€…16, 5(140β€’0,15+3,4β€’8,4+6β€’2,4) = 474, 90Β [MPLN]

where:

Wd – daily run-of-mine production [ ThMg/d]

vjb – processing/ coal handling capacity of plant [m3/Mg/h]

Kjb – unit cost per m3 plant capacity [PLN/(m3/Mg/d)]

Cm – capacity of the coal handling machinery [Mg/Mg/h]

Kjm – unit cost of installation of processing machinery [PLN/(Mg/Mg/h)]

Mm – installed power of the processing plant [kW/Mg/h]

Kjs – unit cost of the installed power [MPLN/(kW/Mg/h)]

Let: vjb = 140; Kjb = 0,15; Cm = 3,4; Kjm = 8,4; Mm = 6; Kjs = 2,4

  1. Expenditure for preparation of mine stockyard and its fencing, Is3 [MPLN]


Is3 = aLbβ€…+β€…brβ€…+β€…cnzβ€…+β€…dFβ€…+β€…eβ€…+β€…5, 25

where:

Lb – length of railway truck in mine stockyard area [km],

r – number of railway crossings in mine stockyard area,

nz – number of loading track for coal

F – surface area of the mine stockyard [ha]

Let: Lb = 0,45; r = 20; nz =11; F = 12; a = 0,45; b = 0,1; c = 0,4; d = 0,45; e = 0,45


Is3 = 0, 45β€…β€’β€…0, 45β€…+β€…0, 1β€…β€’β€…20β€…+β€…0, 4β€…β€’β€…11β€…+β€…0, 45β€…β€’β€…12β€…+β€…0, 45β€…+β€…5, 25 = 17, 7Β [MPLN]

  1. Expenditure for installation of hydraulic backfilling, Is4 [MPLN]

Is4 = 0

  1. Expenditure of the main ventilation infrastructure, Is5 [MPLN]


Is5 = (bp+0,0065qm)Wdβ€…+β€…10, 2Swβ€…+β€…1, 5Sxβ€…+β€…13, 5nm

where:

bp – coefficient, bp=0,09Β β€…β€’β€…Β qs=0,09Β β€…β€’β€…Β 11=0,99

qs – volume of methane emission per Mg of coal extracted [m3/Mg]

qm – yield of gas from methane emission points [m3/Mg]

Sw – number of exhaust ventilation shafts

Sx – number of intake ventilation shafts

nm – number of methane emission points = number of exhaust shafts

Let: qs = 11; qm = 6,6; Sw = 1; Sx = 1; nm = 1


Is5 = (0,09β€’11+0,0065β€’66)β€…β€’β€…16, 5β€…+β€…10, 2β€…β€’β€…1β€…+β€…1, 5β€…β€’β€…1β€…+β€…13, 5β€…β€’β€…1 = 42, 24Β [MPLN]

  1. Expenditure on the installation of electric energy supply infrastructure, Is6 [MPLN]

Is6 = 12,2 [MPLN]

  1. Expenditure on the compressed air supply system, Is7 [MPLN]


Is7 = 1, 47Wdβ€…+β€…2, 25ns1

where:

ns1 – number of compressed air stations = number of winding shafts = 1


Is7 = 1, 47β€…β€’β€…16, 5β€…+β€…2, 25β€…β€’β€…1 = 26, 5Β [MPLN]

  1. Expenditure for hot water supply system, Is8 [MPLN]


$$I_{s8} = \left( \frac{a}{P_{u}} + b \right)W_{d} + c$$

where:

Wd – daily run-of-mine production [ ThMg/d]

Pu – underground productivity [Mg/emp/d]

a, b, c – coefficients depending upon the supply model; a = 2,5 ; b = 0,7 ; c = 8


$$I_{s8} = \left( \frac{a}{P_{u}} + b \right)W_{d} + c$$


$$I_{s8} = \left( \frac{2,5}{5,62} + 0,13 \right) \bullet 16,5 + 8 = 26,88\ \lbrack MPLN\rbrack$$

  1. Expenditure on the construction of administrative buildings and installation of telecommunication network, Is9 [MPLN]


$$I_{s9} = \left( \frac{1,83}{P_{u}} + 0,13 \right)W_{d} + 3,8$$


$$I_{s9} = \left( \frac{1,83}{5,62} + 0,13 \right) \bullet 16,5 + 3,8 = 11,32\ \lbrack MPLN\rbrack$$

where:

Wd – daily run-of-mine production [ ThMg/d]

Pu – underground productivity [Mg/emp/d]

  1. Expenditure on the supply centers, workshops and storage yards and narrow gauge track layout fot mine, Is10 [MPLN]


Is10 = 2, 4Wdβ€…+β€…2, 63

where:

Wd – daily run-of-mine production [ ThMg/d]


Is10 = 2, 4β€…β€’β€…16, 5β€…+β€…2, 63 = 42, 23Β [MPLN]

  1. Expenditure on the mine premises preparation, land work, area protection and fencing, Is11 [MPLN]


Is11 = 16, 5Β [MPLN]

  1. Cost budgeting for mine development construction, Is12 [MPLN]


Is12 = 0, 4Iu2

where:

Iu2 – expenditure on main development openings [MPLN]


Is12 = 0, 4β€…β€’β€…153, 08 = 61, 23Β [MPLN]

  1. Reserve fund for unezpected expediture, Is13 [MPLN]


$$I_{s13} = 0,1(I_{u} + \sum_{i = 1}^{i = 12}{I_{\text{si}})}$$

where:

Iu – total expenditure for underground mine development [MPLN] = 1076,03 [MPLN]

Is13 = 0, 1(1076,03+(54+474,9+17,7+0+42,24+12,2+26,5+26,88+11,32+42,23+16,5+61,23)) = 0, 1(1076,03+785,7) = 186, 17Β [MPLN]

  1. Total expenditure on surface workings, Is [MPLN]


$$I_{s} = \sum_{i = 1}^{i = 13}I_{\text{si}}$$


Is = 785, 7β€…+β€…186, 17 = 971, 87Β [MPLN]

  1. Total CAPEX – total expenditure (underground and surface), I [MPLN]


I = Iuβ€…+β€…Is


I = 1076, 03β€…+β€…971, 87 = 2047, 9Β [MPLN]

  1. Calculation of annual amortization, Aan [MPLN/a]


$$A_{\text{an}} = \frac{I}{t_{\text{av}}}$$

where:

tav – average period of influence of the mine assets, tav = 18 years


$$A_{\text{an}} = \frac{2047,9}{18} = 113,77\ \lbrack\frac{\text{MPLN}}{a}\rbrack$$

  1. Calculation of unit amortization, a [PLN/Mg]


$$a = \frac{A_{\text{an}}}{S}$$

where:

S – annual saleable production of the mine [MMg/a] = 3,3 [MMg/a]


$$a = \frac{113,77}{3,3} = 34,47\ \lbrack\frac{\text{MPLN}}{a}\rbrack$$

Ad VII

OPEX estimation

Annual operating cost specification

Id Cost specification Fixed [MPLN/a] Variable [MPLN/a] Total [MPLN/a] Unit cost [PLN/Mg]
1 Amortization 113,77 Β  113,77 34,48
2 Materials 25,70 70,95 96,65 29,29
3 Energy 37,40 23,76 61,16 18,53
4 Equipment lease and rental 10,80 Β  10,80 3,27
5 Drilling and mining serveces 7,10 47,85 54,95 16,65
6 Methane drainage services 3,00 20,13 23,13 7,01
7 Mining damage services 12,00 Β  12,00 3,64
8 Other mining services 5,00 8,91 13,91 4,22
9 Repair services 25,00 13,20 38,20 11,58
10 Transport services 3,80 11,55 15,35 4,65
11 Other services 10,00 2,97 12,97 3,93
12 Labor costs 440,04 Β  440,04 133,35
13 Welfare securities 89,77 Β  89,77 27,20
14 Union benefits 34,32 Β  34,32 10,40
15 Real property tax 7,65 Β  7,65 2,32
16 Royalties Β  0,07 0,07 0,02
17 Environmental charge Β  0,05 0,05 0,02
18 PFRON charge 3,10 Β  3,10 0,94
19 Other taxes and charges 0,42 Β  0,42 0,13
20 Insurances 4,60 Β  4,60 1,39
21 Total production cost 833,47 199,44 1032,91 313,00
22 Cost of sales Β  Β  206,58 62,60
23 Total operating cost Β  Β  1239,49 375,60
24 Cost minus amortization Β  Β  1125,72 341,13

Year

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Discount

coefficient, at

1,00 0,91 0,83 0,75 0,68 0,62 0,56 0,51 0,47 0,42 0,39 0,35 0,32 0,29 0,26 0,24 0,22 0,20 0,18 0,16

Annual sales, St

[PLN/year]

1,01 1,65 2,12 3,30 3,30 3,30 3,30 3,30 3,30 3,30 3,30 3,30 3,30 3,30 3,30 3,30

Average coal

price, Pt

[PLN/Mg]

450,00 450,00 450,00 450,00 450,00 450,00 450,00 450,00 450,00 450,00 450,00 450,00 450,00 450,00 450,00 450,00

Pevenues, Rt

[MPLN/year]

454,59 742,50 954,64 1485,00 1485,00 1485,00 1485,00 1485,00 1485,00 1485,00 1485,00 1485,00 1485,00 1485,00 1485,00 1485,00

Annual cost, Ct

[MPLN/year]

1125,72 1125,72 1125,72 1125,72 1125,72 1125,72 1125,72 1125,72 1125,72 1125,72 1125,72 1125,72 1125,72 1125,72 1125,72 1125,72

Investments, It

[MPLN/year]

97,52 417,94 292,56 390,08 585,11 390,08 292,56 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Inventories, Bt

[MPLN/year]

65,00 0,00 65,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 -130,00

Capital

expenditures,

Nt=It+Bt

[MPLN/year]

97,52 417,94 292,56 390,08 650,11 390,08 357,56 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 -130,00
Rt-Ct 0,00 0,00 0,00 0,00 -671,13 -383,22 -171,08 359,28 359,28 359,28 359,28 359,28 359,28 359,28 359,28 359,28 359,28 359,28 359,28 359,28
at(Rt-Ct) 0,00 0,00 0,00 0,00 -458,39 -237,95 -96,57 184,37 167,60 152,37 138,52 125,92 114,48 104,07 94,61 86,01 78,19 71,08 64,62 58,74
atNt 97,52 379,94 241,78 293,07 444,04 242,21 201,83 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 -21,26
at(Rt-Ct-Nt) -97,52 -379,94 -241,78 -293,07 -902,43 -480,16 -298,40 184,37 167,60 152,37 138,52 125,92 114,48 104,07 94,61 86,01 78,19 71,08 64,62 80,00

Ad VIII

Evaluation of mine planning project efficiency.

NPV = -1231,48

Ad IX

Sensitivity analyses for criteria NPV

% Average coal price NPV % NPV
-0,1 405 -1 957,95 -58,99
-0,05 427,5 -1 594,72 -29,50
0 450 -1231,48 0,00
0,05 472,5 -868,24 29,50
0,1 495 -505,01 58,99
% CAPEX NPV % NPV
-0,1 1 843,11 -1 049,55 14,77
-0,05 1 945,51 -1 140,52 7,39
0 2 047,90 -1231,48 0,00
0,05 2 150,30 -1 322,45 -7,39
0,1 2 252,69 -1 413,41 -14,77
% Annual cost NPV % NPV
-0,1 1013,152262 -569,77 53,73
-0,05 1069,438499 -900,63 26,87
0 1125,724736 -1231,48 0,00
0,05 1182,010973 -1562,33 -26,87
0,1 1238,29721 -1893,19 -53,73

Ad X

Summary

  1. Reseves:

Proved reserves: 76,369 [MMg]

Saleable reserves: 45,821 [MMg]

  1. Number of seams: 3

  2. Number of shafts: 2

  3. Horizon depth: 600 [m]

  4. Horizon interval: 150 [m]

  5. Number of longwall: 2

  6. Annual saleable production: 3,3 [MMg/a]

  7. Overall manpower: 3667 [man]

  8. Underground manpower: 2934 [man]

  9. Overall productivity: 900 [Mg/emp/a]

  10. Underground productivity: 5,62 [Mg/man/d]

  11. Daily run-of-mine production, Wd: 16,5 [ThMg/d]

  12. CAPEX: 2047,9 [MPLN]

  13. OPEX – Total: 1125,72 [MPLN/a]

  14. NPV: -1231,48

  15. Conclusions derived from sensitivity analysis:

Changes in coal price don't affect the NPV, it always has a negative value. Therefore the investment is unprofitable.


Wyszukiwarka

Podobne podstrony:
Poza rok 2012 Projektowanie No Nieznany
no-wymagania do projektu-2, 2 SEMESTR, Nauka o Organizacji
ANALIZA INPUT OTPUT 30 ST, ZarzΔ…dzanie projektami, ZarzΔ…dzanie(1)
41 OG LNE ZASADY WSTae PNYCH ANALIZ DOK ?NO CIOWYCH NA ETAPIE PROJEKTOWANIA
PROJEKT SI 031 dr No
projekt o narkomanii(1)
!!! ETAPY CYKLU PROJEKTU !!!id 455 ppt
WykΕ‚ad 3 Dokumentacja projektowa i STWiOR
Projekt nr 1piΔ…tek
Projet metoda projektu
34 Zasady projektowania strefy wjazdowej do wsi
PROJEKTOWANIE ERGONOMICZNE
Wykorzystanie modelu procesow w projektowaniu systemow informatycznych
Narzedzia wspomagajace zarzadzanie projektem

wiΔ™cej podobnych podstron