Oblicz współrzędne punktów 1, 2 i 3 na domiarach prostokątnych.
Dane:
A (212,31m; 588,23m)
B (291,32m; 712,21m)
Pomierzone:
d11' = 32,32m
d22' = 5,96m
d33' = 8,78m
dAB = 147,05m
dA1' = -12,40m
dA2' = 31,14m
dA3' = 45,11m
ROZWIĄZANIE
ΔxAB = XB – XA = 79,01m
ΔyAB = YB – YA = 123,98m
LAB = √____________ ΔxAB2 + ΔyAB2
LAB = √________________ 79,012 + 123,9892
DAB = 147,02m
f = ΙlAB – LABΙ = Ι147,05 – 147,02Ι = 0,03m
fl = 0,07m
Warunek f ≤ fl jest spełniony.
Obliczenie współrzędnych punktu 1
X1 = XA + ΔxA1' – Δx11' = 212,31 + (-6,66) – 27,25 = 178,40m
Y1 = YA + ΔyA1' + Δy11', = 588,23 + (-10,45) + 17,37 = 595,15m
gdzie:
ΔxA1' = lA1'Δx lAB
ΔxA1' = -12,40 79,01 147,05
ΔxA1' = -6,66m
ΔyA1' = lA1' Δy lAB
ΔyA1' = -12,40 123,98 147,05
ΔyA1' = -10,45m
Δx11' = d11'Δy lAB
Δx11' = 32,32 123,98 147,05
Δx11' = 27,25m
Δy11' = d11' Δx lAB
Δy11' = 32,32 79,01 147,05
Δy11' = 17,37m
Obliczenie współrzędnych punktu 2
X2 = XA + ΔxA2' – Δx22' = 212,31 + 16,73 – 5,02 = 224,02m
Y2 = YA + ΔyA2' + Δy22', = 588,23 + 26,25 + 3,20 = 617,68m
gdzie:
ΔxA2' = lA2'Δx lAB
ΔxA2' = 31,14 79,01 147,05
ΔxA2' = 16,73m
ΔyA2' = lA2' Δy lAB
ΔyA2' = 31,14 123,98 147,05
ΔyA2' = 26,25m
Δx22' = d22'Δy lAB
Δx22' = 5,96 123,98 147,05
Δx22' = 5,02m
Δy22' = d22' Δx lAB
Δy22' = 5,96 79,01 147,05
Δy22' = 3,20m
Obliczenie współrzędnych punktu 3
X3 = XA + ΔxA3' + Δx33' = 212,31 + 24,24 + 7,40 = 243,95m
Y3 = YA + ΔyA3' – Δy33', = 588,23 + 38,03 – 4,72 = 617,68m
gdzie:
ΔxA3' = lA3'Δx lAB
ΔxA3' = 45,11 79,01 147,05
ΔxA3' = 24,24m
ΔyA3' = lA3' Δy lAB
ΔyA3' = 45,11 123,98 147,05
ΔyA3' = 38,03m
Δx33' = d33'Δy lAB
Δx33' = 8,78 123,98 147,05
Δx33' = 7,40m
Δy33' = d33' Δx lAB
Δy33' = 8,78 79,01 147,05
Δy33' = 4,72mKontrola
Numer punktu | Odcięte l | Rzędne d | Różnice odciętych Δl | Różnice rzędnych Δd |
---|---|---|---|---|
A | 0,00 | 0,00 | -12,40 | 32,32 |
1 | -12,40 | 32,32 | 43,54 | -26,36 |
2 | 31,14 | 5,96 | 13,97 | -14,74 |
3 | 45,11 | -8,78 | 101,94 | 8,78 |
B | 147,05 | 0,00 | 147,05 | 0,00 |
Obliczenie współrzędnych punktu B ze współrzędnych punktu 1
XB = X1 + ΔxB1' + Δx11' = 178,40 + 85,67 + 27,25 = 291,32m
YB = Y1 + ΔyB1' – Δy11', = 595,15 + 134,43 – 17,37 = 712,21m
gdzie:
ΔxB1' = (lAB – lA1')Δx lAB
ΔxB1' = 159,45 79,01 147,05
ΔxB1' = 85,67m
ΔyB1' = (lAB – lA1') Δy lAB
ΔyB1' = 159,45 123,98 147,05
ΔyB1' = 134,43m
Δx11' = d11'Δy lAB
Δx11' = 32,32 123,98 147,05
Δx11' = 27,25m
Δy11' = d11' Δx lAB
Δy11' = 32,32 79,01 147,05
Δy11' = 17,37m
Obliczenie współrzędnych punktu B ze współrzędnych punktu 2
XB = X2 + ΔxB2' + Δx22' = 224,02 + 62,28 + 5,02 = 291,32m
YB = Y2 + ΔyB2' – Δy22', = 617,68 + 97,73 – 3,20 = 712,21m
gdzie:
ΔxB2' = (lAB – lA2')Δx lAB
ΔxB2' = 115,91 79,01 147,05
ΔxB2' = 62,28m
ΔyB2' = (lAB – lA2') Δy lAB
ΔyB2' = 115,91 123,98 147,05
ΔyB2' = 97,73m
Δx22' = d22'Δy lAB
Δx22' = 5,96 123,98 147,05
Δx22' = 5,02m
Δy22' = d22' Δx lAB
Δy22' = 5,96 79,01 147,05
Δy22' = 3,20m
Obliczenie współrzędnych punktu B ze współrzędnych punktu 3
XB = X3 + ΔxB3' – Δx33' = 243,95 + 54,77 – 7,40 = 291,32m
YB = Y3 + ΔyB3' + Δy33', = 621,54 + 85,95 + 4,72 = 712,21m
gdzie:
ΔxB3' = (lAB – lA3')Δx lAB
ΔxB3' = 101,94 79,01 147,05
ΔxB3' = 54,77m
ΔyB3' = (lAB – lA3') Δy lAB
ΔyB3' = 101,94 123,98 147,05
ΔyB3' = 85,95m
Δx33' = d33'Δy lAB
Δx33' = 8,78 123,98 147,05
Δx33' = 7,40m
Δy33' = d33' Δx lAB
Δy33' = 8,78 79,01 147,05
Δy33' = 4,72m
Oblicz współrzędne punktu P metodą wcięcia kątowego w przód.
Dane:
A (150,00m; 500,00m)
B (400,00m; 200,00m)
Pomierzone:
α = 30g,0000
β = 50g,0000
ROZWIĄZANIE
ΔxAB = XB – XA = 250,00m
ΔyAB = YB – YA = -300,00m
DAB = √____________ ΔxAB2 + ΔyAB2
DAB = √________________ 250,002 + (-300,00)2
DAB = 390,512m
φAB = arctg ΔyAB ΔxAB
φAB = arctg -300,00 250,00
φAB = -55g,77159
ΔxAB = 250,00m >0
ΔyAB = -300,00m <0
Zatem czwartak leży w IV ćwiartce, więc AAB = 400g,0000 + φAB
AAB = 400g,0000 + (-55g,77159) = 344g,22841
dAP = DAB•sinβ sin(α + β)
dAP = 390,512•sin(50g,0000) sin(80g,0000)
dAP = 290,344m
AAP = AAB + α = 344g,22841 + 30g,0000 = 374g,22841
ΔxAP = dAPcosAAP = 290,344•cos(374g,22841) = 266,877m
ΔyAP = dAPsinAAP = 290,344•sin(374g,22841) = -114,353m
Ostateczne współrzędne szukanego punktu P:
XP = XA + ΔxAP = 150,00 + 266,877 = 416,877m = 416,88m
YP = YA + ΔyAP = 500,00 + (-114,353) = 385,647m = 385,65
Kontrola
ABA = AAB - 200g,0000 = 144g,22841
dBP = DAB•sinα sin(α + β)
dBP = 390,512•sin(30g,0000) sin(80g,0000)
dBP = 186,412m
ABP = ABA − β = 144g,22841 - 50g,0000 = 94g,22841
ΔxBP = dBPcosABP = 186,412•cos(94g,22841) = 16,877m
ΔyBP = dBPsinABP = 186,412•sin(94g,22841) = 185,646m
Ostateczne współrzędne szukanego punktu P:
XP = XB + ΔxBP = 400,00 + 16,877 = 416,877m = 416,88m
YP = YB + ΔyBP = 200,00 + 185,646 = 385,646m = 385,65m
Dodatkowa kontrola
γ = 200g,0000 − (α + β) = 120g,0000
ΔxPB = XB – XP = 400,00 – 416,877 = -16,877m
ΔyPB = YB – YP = 200,00 – 385,646 = -185,647m
φPB = arctg ΔyPB ΔxPB
φPB = arctg -185,647 -16,877
φPB = 94g,22841
APB = 200g,0000 + φPB = 294g,22841
ΔxPA = XA – XP = 150,00 – 416,877 = -266,877m
ΔyPA = YA – YP = 500,00 – 385,646 = 114,353m
φPA = arctg ΔyPA ΔxPA
φPA = arctg 114,353 -266,877
φPA = -25g,77161
APA = 200g,0000 + φPA = 174g,22839
γ = APB – APA = 294g,22841 – 174g,22839 = 120g,0000
Oblicz współrzędne punktu P metodą wcięcia liniowego.
Dane:
A (100,00m; 100,00m)
B (100,00m; 300,00m)
Pomierzone:
dAP = 100,00m
dBP = 173,21m
ROZWIĄZANIE
ΔxAB = XB – XA = 0,00m
ΔyAB = YB – YA = 200,00m
DAB = √____________ ΔxAB2 + ΔyAB2
DAB = √________________ 0,002 + 200,002
DAB = 200,00m
Jeśli ΔxAB = 0 oraz ΔyAB > 0, wówczas AAB = 100g,0000
γ = arctg DAB2 –(dAP2 + dBP2) –2dAPdBP
γ = arctg 200,002 –(100,002 + 173,212) –2•100,00•173,21
γ = 99g,99687
β = arctg dAP2 –(DAB2 + dBP2) –2DABdBP
β = arctg 100,002 –(200,002 + 173,212) –2•200,00•173,21
β = 33g,33333
α = arctg dBP2 –(dAP2 + DAB2) –2dAPDAB
α = arctg 173,212 –(100,002 + 200,002) –2•100,00•200,00
α = 66g,66980
α + β + γ = 66g,66980 + 33g,33333 + 99g,99687 = 200g,0000
AAP = AAB –α = 100g,00000 –66g,66980 = 33g,33020
ΔxAP = dAPcosAAP = 100,00•cos(33g,33020) = 86,605m
ΔyAP = dAPsinAAP = 100,00•sin(33g,33020) = 49,996m
Ostateczne współrzędne szukanego punktu P:
XP = XA + ΔxAP = 100,00 + 86,605 = 186,605m = 186,60m
YP = YA + ΔyAP = 100,00 + 49,996 = 149,996m = 150,00m
Kontrola
ABA = AAB + 200g,00000 = 300g,00000
ABP = ABA + β = 300g,00000 + 33g,33333 = 333g,33333
ΔxBP = dBPcosABP = 173,21•cos(333g,33333) = 86,605m
ΔyBP = dBPsinABP = 173,21•sin(333g,33333) = -150,004m
Ostateczne współrzędne szukanego punktu P:
XP = XB + ΔxBP = 100,00 + 86,605 = 186,605m = 186,60m
YP = YB + ΔyBP = 300,00 + (-150,004) = 149,996m = 150,00m
Oblicz współrzędne punktów 2 i 3 mając dane współrzędne punktów A, B, C i 1.
Dane:
A (100,00m, 100,00m),
B (300,00m, 600,00m),
C (250,00m, 750,00m),
1 (50,00m, 200,00m);
Pomierzone
- kąty:
α1 = 110g,0600,
α2 = 230g,4000,
α3 = 210g,5006,
α4 = 240g,0000;
- długości:
d12=155,00m,
d23=150,00m,
d3B=185,00m;
ROZWIĄZANIE
ΔxA1 = X1 – XA = -50,00m
ΔyA1 = Y1 – YA = 100,00m
φA1 = arctg ΔyAB ΔxAB
φA1 = arctg 100,00 -50,00
φA1 = -70g,48328
ΔxA1 = -50,00m <0
ΔyA1 = 100,00m >0
Zatem czwartak leży w II ćwiartce, więc AA1 = 200g,0000 + φA1
AA1 = 200g,0000 + (-70g,48328) = 129g,51672
ΔxBC = XC – XB = -50,00m
ΔyBC = YC – YB = 150,00m
φBC = arctg ΔyBC ΔxBC
φBC = arctg 150,00 -50,00
φBC = -79g,51672
ΔxBC = -50,00m <0
ΔyBC = 150,00m >0
Zatem czwartak leży w II ćwiartce, więc ABC = 200g,0000 + φBC
ABC = 200g,0000 + (-79g,51672) = 120g,48328
∑αp = α1 + α2 + α3 + α4 = 790g,96060
∑αt = ABC – AA1 + 4•200g,0000 = 790g,96656
fα = ∑αp – ∑αt = -59cc,6
fdop = ± 360cc
Warunek f ≤ fdop jest spełniony.
vαi = – fα n
vαi = – -59cc,6 4
vαi = 14cc,9
vα1 = 14cc,9
vα2 = 14cc,9
vα3 = 14cc,9
vα4 = 14cc,9
∑vαi = -59cc,6 = -fα
_ α1 = α1 + vα1 = 110g,06149
_ α2 = α2 + vα2 = 230g,40149
_ α3 = α3 + vα3 = 210g,50209
_ α4 = α4 + vα4 = 240g,00149
A1 = AA1 + _ α1 – 200g,0000 = 39g,57821
A2 = A1 + _ α2 – 200g,0000 = 69g,97970
A3 = A2 + _ α3 – 200g,0000 = 80g,48179
ABC = A3 + _ α4 – 200g,0000 = 120g,48328
ΔX12 = d12cosA1 = 125,999m
ΔY12 = d12sinA1 = 90,274m
ΔX23 = d23cosA2 = 68,141m
ΔY23 = d23sinA2 = 133,629m
ΔX3B = d3BcosA3 = 55,835m
ΔY3B = d3BsinA3 = 176,373m
∑ΔXp = 249,975m
∑ΔYp = 400,276m
∑ΔXt = XB – X1 = 250,000m
∑ΔYt = YB – Y1 = 400,000m
fx = ∑ΔXp – ∑ΔXt = -0,025m
fy = ∑ΔYp – ∑ΔYt = 0,276m
fL = √_________ fx2 + fy2
fL = √________________ (-0,025)2 + 0,2762
fL = 0,277m
fLdop = 0,170m
Za odchyłkę liniową przyjmujemy podwójną wartość dopuszczalnej odchyłki liniowej stabelaryzowanej w Instrukcji technicznej G-4, zał.3.
d = d12 + d23 + d3B = 490,000m
vx12 = – fx d12 d
vy12 = – fyd12 d
vx23 = – fxd23 d
vy23 = – fy d23 d
vx3B = – fx d3B d
vy3B = – fy d3B d
∑vxi = 0,025m = -fx
∑vy;i = -0,276m = -fy
__ ΔX12 = X12 + vx12 = 126,007m
__ ΔY12 = Y12 + vy12 = 90,187m
__ ΔX23 = X23 + vx23 = 68,149m
__ ΔY23 = Y23 + vy23 = 133,544m
__ ΔX3B = X3B + vx3B = 55,844m
__ ΔY3B = Y3B + vy3B = 176,269m
_ X2 = X1 + __ ΔX12= 176,007m
_ Y2 = Y1 + __ ΔY12= 290,187m
_ X3 = X2 + __ ΔX23= 244,156m
_ Y3 = Y2 + __ ΔY23= 423,731m
_ XB = X3 + __ ΔX3B= 300,000m = XB
_ YB = Y3 + __ ΔY3B= 600,000m = YB