001

Laboratorium Podstaw Fizyki

Nr ćwiczenia : 001

Temat ćwiczenia : WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO I SPRAWDZENIE TWIERDZENIA STEINERA

Nazwisko i Imię prowadzącego kurs : Mgr Adam Mielnik-Pyszczorski

Imię i Nazwisko

nr indeksu, wydział

Piotr Pająk, 227223, W5 AiR
Termin zajęć: dzień tygodnia, godzina Środa, 1115-1300
Numer grupy ćwiczeniowej 1
Data oddania sprawozdania: 16.03.2016
Ocena końcowa

Zatwierdzam wyniki pomiarów.

Data i podpis prowadzącego zajęcia ............................................................

Adnotacje dotyczące wymaganych poprawek oraz daty otrzymania

poprawionego sprawozdania

  1. Wstęp teoretyczny:

Podczas tego ćwiczenia należało wyznaczyć moment bezwładności metalowej tarczy z wyciętymi symetrycznie otworami oraz metalowego pierścienia względem osi środkowej i osi obrotu. Dla tarczy trzeba było dokonać pięciokrotnego pomiaru czasu 100 wahnięć dla trzech różnych odległość od osi obrotu do środka masy zmierzonych wcześniej za pomocą suwmiarki. Dla metalowego pierścienia należało wykonać sześć pomiarów 100 wahnięć i zmierzyć średnicę zewnętrzną oraz wewnętrzną pierścienia. Masę przedmiotów trzeba było określić za pomocą wagi laboratoryjnej.

Opracowanie wyników:

  1. Tarcza:

Obliczyć


$$I_{d} = \frac{T^{2}\text{mgd}}{8\pi^{2}}$$

Sprawdzić:


$$I_{o} = I_{d} - m\frac{d^{2}}{4} = \frac{T^{2}\text{mgd}}{{8\pi}^{2}} - m\frac{d^{2}}{4}$$

dla wszystkich wartości d oraz niepewność pomiarową.

  1. Pierścień:

Obliczyć

  1. Wykaz przyrządów:

  1. Schemat układu pomiarowego:

  1. Tabele pomiarowe:

  1. Metalowa tarcza

m

[g]

u(m)

[g]

n u(n)
1221,6 0,1 100 1

d

[mm]

u(d)

[mm]

t

[s]

tśr

[s]

u(tśr)

[s]

T

[s]

uc(T)

[s]

Id

[kgm2]

uc(Id)

[kgm2]

Io

[kgm2]

uc(Io)

[kgm2]

C

[m2]

uc(C)

[m2]

Cśr

[m2]

uc(Cśr)

[m2]

Io.st

[kgm2]

uc(Io.st)

[kgm2]

49,75 0,029 75,49 77,04 0,30 0,77 0,0083 0,0045 0,00090 0,0038 0,00090 0,121 0,0032 0,123 0,0065 0,0038 0,00021
78,50
76,12
77,47
77,62
99,90 67,32 67,05 0,034 0,67 0,0068 0,0067 0,0013 0,0039 0,0013 0,123 0,0058
67,09
66,40
66,98
67,44
139,30 68,18 68,07 0,035 0,68 0,0069 0,0098 0,0019 0,0039 0,0019 0,125 0,0065
67,39
67,61
68,12
69,03
  1. Pierścień

m

[g]

u(m)

[g]

n u(n)

d

[mm]

u(d)

[mm]

D

[mm]

u(D)

[mm]

204,8 0,1 100 1 99,70 0,029 109,70 0,029

t

[s]

tśr

[s]

u(t)

[s]

T

[s]

uc(T)

[s]

Id

[kgm2]

uc(Id)

[kgm2]

Io

[kgm2]

uc(Io)

[kgm2]

Io.st

[kgm2]

uc(Io.st)

[kgm2]

64,76 65,18 0,072 0,66 0,0066 0,0022 0,00039 0,0017 0,00039 0,0015 0,0000024
65,89
65,28
64,15
65,17
65,81
  1. Przykładowe wzory i obliczenia:


$$\mathbf{u}\left( \mathbf{d} \right)\mathbf{=}\sqrt{\frac{\mathbf{(}{\mathbf{\Delta}\mathbf{X)}}^{\mathbf{2}}}{\mathbf{3}}}$$


$$u\left( d \right) = \sqrt{\frac{\left( 0,05 \right)^{2}}{3}} = 0,029\left\lbrack \text{mm} \right\rbrack$$


$$\mathbf{u}\left( \mathbf{m} \right)\mathbf{=}\sqrt{\frac{\mathbf{(}{\mathbf{\Delta}\mathbf{X)}}^{\mathbf{2}}}{\mathbf{3}}}$$


$$u\left( m \right) = \sqrt{\frac{\left( {0,1}^{2} \right)}{3}} = 0,058 \approx 0,1\left\lbrack g \right\rbrack$$


$$\mathbf{tsr =}\frac{\mathbf{1}}{\mathbf{5}}\sum_{\mathbf{i = 1}}^{\mathbf{5}}\mathbf{ti =}\mathbf{\ }\frac{\mathbf{t}_{\mathbf{1}}\mathbf{+}\mathbf{t}_{\mathbf{2}}\mathbf{+}\mathbf{t}_{\mathbf{3}}\mathbf{+}\mathbf{t}_{\mathbf{4}}\mathbf{+}\mathbf{t}_{\mathbf{5}}}{\mathbf{5}}$$


$$tsr = \frac{385,2}{5} = 77,04\left\lbrack s \right\rbrack$$


$$\mathbf{u}\left( \mathbf{t} \right)\mathbf{=}\sqrt{\left( \mathbf{u}_{\mathbf{a}}\left( \mathbf{t} \right) \right)^{\mathbf{2}}\mathbf{+}\left( \mathbf{u}_{\mathbf{b}}\mathbf{(t)} \right)^{\mathbf{2}}}\mathbf{=}\sqrt{\left( \frac{\sum_{\mathbf{i = 1}}^{\mathbf{6}}{\mathbf{(Xi -}\mathbf{}\mathbf{)}}^{\mathbf{2}}}{\mathbf{n(n - 1)}} \right)^{\mathbf{2}}\mathbf{+}\left( \frac{\mathbf{(}{\mathbf{\Delta}\mathbf{X)}}^{\mathbf{2}}}{\mathbf{3}} \right)^{\mathbf{2}}}$$


$$u\left( t \right) = \sqrt{\left( \frac{5,902}{20} \right)^{2} + \frac{\left( 0,01 \right)^{2}}{3}} = 0,30\left\lbrack s \right\rbrack$$


$$\mathbf{T =}\frac{\mathbf{t}_{\mathbf{sr}}}{\mathbf{n}}$$


$$T = \frac{77,04}{100} = 0,77\left\lbrack s \right\rbrack$$


$$\mathbf{u}_{\mathbf{c}}\left( \mathbf{T} \right)\mathbf{=}\sqrt{\left( \frac{\mathbf{\partial T}}{\mathbf{\partial t}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{t} \right)\mathbf{+}\left( \frac{\mathbf{\partial T}}{\mathbf{\partial n}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{n} \right)}\mathbf{=}\sqrt{\left( \frac{\mathbf{1}}{\mathbf{n}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{t}_{\mathbf{sr}} \right)\mathbf{+}\left( \mathbf{-}\frac{\mathbf{t}_{\mathbf{sr}}}{\mathbf{n}^{\mathbf{2}}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{n} \right)}$$


$$u_{c}\left( T \right) = \sqrt{\left( \frac{1}{100} \right)^{2}*\left( 0,30 \right)^{2} + \left( - \frac{77,04}{100^{2}} \right)^{2}*\left( 1 \right)^{2}} = 0,0083\left\lbrack s \right\rbrack$$


$$\mathbf{I}_{\mathbf{d}}\mathbf{=}\frac{\mathbf{T}^{\mathbf{2}}\mathbf{\text{mgd}}}{\mathbf{8}\mathbf{\pi}^{\mathbf{2}}}$$


$$I_{d} = \frac{\left( 0,77 \right)^{2}*1,2216*9,81*0,04975}{8*\left( 3,14 \right)^{2}} = 0,0045\left\lbrack \text{kgm}^{2} \right\rbrack$$


$$\mathbf{u}_{\mathbf{c}}\left( \mathbf{I}_{\mathbf{d}} \right)\mathbf{=}\sqrt{\left( \frac{\mathbf{\partial}\mathbf{I}_{\mathbf{d}}}{\mathbf{\partial T}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{T} \right)\mathbf{+}\left( \frac{\mathbf{\partial}\mathbf{I}_{\mathbf{d}}}{\mathbf{\partial m}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{m} \right)\mathbf{+}\left( \frac{\mathbf{\partial}\mathbf{I}_{\mathbf{d}}}{\mathbf{\partial d}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{d} \right)}$$


$$\mathbf{u}_{\mathbf{c}}\left( \mathbf{I}_{\mathbf{d}} \right)\mathbf{=}\sqrt{\left( \frac{\mathbf{\text{Tmgd}}}{{\mathbf{4}\mathbf{\pi}}^{\mathbf{2}}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{T} \right)\mathbf{+}\left( \frac{\mathbf{T}^{\mathbf{2}}\mathbf{\text{gd}}}{{\mathbf{8}\mathbf{\pi}}^{\mathbf{2}}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{m} \right)\mathbf{+}{\left( \frac{\mathbf{T}^{\mathbf{2}}\mathbf{\text{mg}}}{{\mathbf{8}\mathbf{\pi}}^{\mathbf{2}}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{d} \right)}^{\mathbf{2}}}$$


$$u_{c}\left( I_{d} \right) = \sqrt{\left( \frac{0,77*1,2216*9,81*0,04975}{4*\left( 3,14 \right)^{2}} \right)^{2}*\left( 0,0083 \right)^{2} + \left( \frac{\left( 0,77 \right)^{2}*9,81*0,04975}{8*\left( 3,14 \right)^{2}} \right)^{2}*\left( 0,0001 \right)^{2} + \left( \frac{\left( 0,77 \right)^{2}*1,2216*9,81}{8*\left( 3,14 \right)^{2}} \right)^{2}*\left( 0,000029 \right)^{2}} = 0,000097\text{kgm}^{2}$$


$$\mathbf{I}_{\mathbf{o}}\mathbf{=}\mathbf{I}_{\mathbf{d}}\mathbf{- m}\frac{\mathbf{d}^{\mathbf{2}}}{\mathbf{4}}\mathbf{=}\frac{\mathbf{T}^{\mathbf{2}}\mathbf{\text{mgd}}}{{\mathbf{8}\mathbf{\pi}}^{\mathbf{2}}}\mathbf{- m}\frac{\mathbf{d}^{\mathbf{2}}}{\mathbf{4}}$$


$$I_{o} = 0,0045 - 1,2216*\frac{\left( 0,04975 \right)^{2}}{4} = 0,0038\left\lbrack \text{kgm}^{2} \right\rbrack$$


$$\mathbf{u}_{\mathbf{c}}\left( \mathbf{I}_{\mathbf{o}} \right)\mathbf{=}\sqrt{\left( \frac{\mathbf{\partial}\mathbf{I}_{\mathbf{o}}}{\mathbf{\partial}\mathbf{I}_{\mathbf{d}}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{I}_{\mathbf{d}} \right)\mathbf{+}\left( \frac{\mathbf{\partial}\mathbf{I}_{\mathbf{o}}}{\mathbf{\partial m}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{m} \right)\mathbf{+}\left( \frac{\mathbf{\partial}\mathbf{I}_{\mathbf{o}}}{\mathbf{\partial d}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{d} \right)}$$


$$\mathbf{u}_{\mathbf{c}}\left( \mathbf{I}_{\mathbf{o}} \right)\mathbf{=}\sqrt{\left( \mathbf{1} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{I}_{\mathbf{d}} \right)\mathbf{+}\left( \mathbf{-}\frac{\mathbf{d}^{\mathbf{2}}}{\mathbf{4}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{m} \right)\mathbf{+}\left( \mathbf{-}\frac{\mathbf{\text{md}}^{\mathbf{2}}}{\mathbf{2}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{d} \right)}$$


$$u_{c}\left( I_{o} \right) = \sqrt{\left( 1 \right)^{2}*\left( 0,000097 \right)^{2} + \left( - \frac{\left( 0,04975 \right)^{2}}{4} \right)^{2}*\left( 0,0001 \right)^{2} + \left( - \frac{1,2216*\left( 0,04975 \right)^{2}}{2} \right)^{2}*\left( 0,000029 \right)^{2}} = 0,00090\left\lbrack \text{kgm}^{2} \right\rbrack$$


$$\mathbf{C =}\mathbf{T}^{\mathbf{2}}\mathbf{g}\frac{\mathbf{d}}{\mathbf{2}}\mathbf{-}\mathbf{\pi}^{\mathbf{2}}\mathbf{d}^{\mathbf{2}}$$


$$C = \left( 0,77 \right)^{2}*9,81*\frac{0,04975}{2} - \left( 3,14 \right)^{2}*\left( 0,04975 \right)^{2} = 0,121\left\lbrack m^{2} \right\rbrack$$


$$\mathbf{u}_{\mathbf{c}}\left( \mathbf{C} \right)\mathbf{=}\sqrt{\left( \frac{\mathbf{\partial}\mathbf{C}}{\mathbf{\partial}\mathbf{T}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{T} \right)\mathbf{+}\left( \frac{\mathbf{\partial}\mathbf{C}}{\mathbf{\partial d}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{d} \right)}$$


$$\mathbf{u}_{\mathbf{c}}\left( \mathbf{C} \right)\mathbf{=}\sqrt{\left( \mathbf{\text{Tgd}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{T} \right)\mathbf{+}\left( \frac{\mathbf{T}^{\mathbf{2}}\mathbf{g}}{\mathbf{2}}\mathbf{- 2}\mathbf{\pi}^{\mathbf{2}}\mathbf{d} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{d} \right)}$$


$$u_{c}\left( C \right) = \sqrt{\left( 0,77*9,81*0,04975 \right)^{2}*\left( 0,0083 \right)^{2} + \left( \frac{\left( 0,77 \right)^{2}*9,81}{2} - 2*\left( 3,14 \right)^{2}*0,04975 \right)^{2}*\left( 0,000029 \right)^{2}} = 0,0032\left\lbrack m^{2} \right\rbrack$$


$$\mathbf{C}_{\mathbf{sr}}\mathbf{=}\frac{\mathbf{1}}{\mathbf{3}}\sum_{\mathbf{i = 1}}^{\mathbf{3}}\mathbf{Ci =}\mathbf{\ }\frac{\mathbf{C}_{\mathbf{1}}\mathbf{+}\mathbf{C}_{\mathbf{2}}\mathbf{+}\mathbf{C}_{\mathbf{3}}}{\mathbf{3}}$$


$$C_{sr} = \frac{0,369}{3} = 0,123\left\lbrack m^{2} \right\rbrack$$


$$\mathbf{I}_{\mathbf{\text{o.st}}}\mathbf{=}\frac{\mathbf{\text{mC}}}{{\mathbf{4}\mathbf{\pi}}^{\mathbf{2}}}$$


$$I_{\text{o.st}} = \frac{1,2216*0,123}{4*\left( 3,14 \right)^{2}} = 0,0038\left\lbrack \text{kgm}^{2} \right\rbrack$$


$$\mathbf{u}_{\mathbf{c}}\left( \mathbf{I}_{\mathbf{\text{o.st}}} \right)\mathbf{=}\sqrt{\left( \frac{\mathbf{\partial}\mathbf{I}_{\mathbf{\text{o.st}}}}{\mathbf{\partial C}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{m} \right)\mathbf{+}\left( \frac{\mathbf{\partial}\mathbf{I}_{\mathbf{\text{o.st}}}}{\mathbf{\partial n}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{C}_{\mathbf{sr}} \right)}$$


$$\mathbf{u}_{\mathbf{c}}\left( \mathbf{I}_{\mathbf{\text{o.st}}} \right)\mathbf{=}\sqrt{\left( \frac{\mathbf{C}}{{\mathbf{4}\mathbf{\pi}}^{\mathbf{2}}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{m} \right)\mathbf{+}\left( \frac{\mathbf{m}}{{\mathbf{4}\mathbf{\pi}}^{\mathbf{2}}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{C}_{\mathbf{sr}} \right)}$$


$$u_{c}\left( I_{\text{o.st}} \right) = \sqrt{\left( \frac{0,123}{4*\left( 3,14 \right)^{2}} \right)^{2}*\left( 0,0001 \right)^{2} + \left( \frac{1,2216}{4*\left( 3,14 \right)^{2}} \right)^{2}*\left( 0,0065 \right)^{2}} = 0,00021\left\lbrack \text{kgm}^{2} \right\rbrack$$


$$\mathbf{I}_{\mathbf{o}}\mathbf{=}\frac{\mathbf{1}}{\mathbf{8}}\mathbf{m}\left( \mathbf{d}^{\mathbf{2}}\mathbf{+}\mathbf{D}^{\mathbf{2}} \right)$$


$$I_{o} = \frac{1}{8}*0,2048*\left( {0,0997}^{2} + {0,1097}^{2} \right) = 0,0015\left\lbrack \text{kgm}^{2} \right\rbrack$$


$$\mathbf{u}_{\mathbf{c}}\left( \mathbf{I}_{\mathbf{\text{o.st}}} \right)\mathbf{=}\sqrt{\left( \frac{\mathbf{\partial}\mathbf{I}_{\mathbf{\text{o.st}}}}{\mathbf{\partial m}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{m} \right)\mathbf{+}\left( \frac{\mathbf{\partial}\mathbf{I}_{\mathbf{\text{o.st}}}}{\mathbf{\partial d}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{d} \right)\mathbf{+}\left( \frac{\mathbf{\partial}\mathbf{I}_{\mathbf{\text{o.st}}}}{\mathbf{\partial D}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{D} \right)}$$


$$\mathbf{u}_{\mathbf{c}}\left( \mathbf{I}_{\mathbf{\text{o.st}}} \right)\mathbf{=}\sqrt{\left( \frac{\mathbf{d}^{\mathbf{2}}\mathbf{+}\mathbf{D}^{\mathbf{2}}}{\mathbf{8}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{m} \right)\mathbf{+}\left( \frac{\mathbf{m}\left( \mathbf{2}\mathbf{d +}\mathbf{D}^{\mathbf{2}} \right)}{\mathbf{8}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{d} \right)\mathbf{+}\left( \frac{\mathbf{m}\left( \mathbf{2}\mathbf{D +}\mathbf{d}^{\mathbf{2}} \right)}{\mathbf{8}} \right)^{\mathbf{2}}\mathbf{u}^{\mathbf{2}}\left( \mathbf{D} \right)}$$


$$u_{c}\left( I_{\text{o.st}} \right) = \sqrt{\left( \frac{\left( 0,0997 \right)^{2} + \left( 0,1097 \right)^{2}}{8} \right)^{2}*\left( 0,001 \right)^{2} + \left( \frac{0,2048\left( 2*0,0977 + \left( 0,1097 \right)^{2} \right)}{8} \right)^{2}*\left( 0,000029 \right)^{2} + \left( \frac{0,2048\left( 2*0,1097 + \left( 0,0977 \right)^{2} \right)}{8} \right)^{2}*\left( 0,000029 \right)^{2}} = 0,0000024\left\lbrack \text{kgm}^{2} \right\rbrack$$


Wyszukiwarka

Podobne podstrony:
001 Istota Marketingu i otoczenie
3616 001
001
2980 001
I wojna swiatowa i Rosja 001
001
gruzlica 001
BVSOI 3 001 E en
1119155152 001
P27 001
2012 11 22 Document 001
Access to History 001 Gas Attack! The Canadians at Ypres, 1915
0718 001
p08 001
Ir 1 (R 1) 001 002 Okładka
001 prawo
Kr 001 Dwa podstawowe modele
2977 001

więcej podobnych podstron