1. |
$$\sum_{}^{}F_{x} = 0 = - F_{1}\cos 30 + S_{1} + S_{2}cos45$$
$$\sum_{}^{}{F_{y} = 0 =} - F_{1}\sin 30 - S_{2}sin45$$
S2sin45 = −F1sin30
$$S_{2} = \frac{{- F}_{1}\sin 30}{sin45} = \frac{- 1500 \bullet 0.5}{\frac{\sqrt{}2}{2}}$$
S1 = F1cos30 − S2cos45
$$S_{1} = 1500 \bullet \frac{\sqrt{}3}{2} + 1060.66 \bullet \frac{\sqrt{}2}{2}$$
|
S2 = −1060.66
S1 = 2049.04
|
2. |
$$\sum_{}^{}F_{x} = 0 = - S_{2}cos45 + S_{4}cos45 + S_{3}$$
$$\sum_{}^{}{F_{y} = 0 = S_{2}sin45 + S_{4}sin45 - F_{2}}$$
$$S_{4} = \frac{F_{2} - S_{2}sin45}{sin45}$$
$$S_{4} = \frac{2000 + 1060.66 \bullet \frac{\sqrt{}2}{2}}{\frac{\sqrt{}2}{2}}$$
S3 = −S4cos45 + S2cos45
$$S_{3} = - 3889.09 \bullet \frac{\sqrt{}2}{2} - 1060.66 \bullet \frac{\sqrt{}2}{2}$$
|
S4 = 3889.09
S3 = 3500.00
|
3. |
$$\sum_{}^{}F_{x} = 0 = S_{1} + S_{5} - S_{4}cos45 + S_{6}cos45$$
$${\sum_{}^{}{F_{y} = 0 = - R_{A} -}S}_{4}sin45 - S_{6}sin45$$
$$S_{6} = \frac{{- S}_{4}sin45 - R_{A}}{sin45}$$
$$S_{6} = \frac{- 3889.09 \bullet \frac{\sqrt{}2}{2} - 5171.63}{\frac{\sqrt{}2}{2}}$$
S5 = S1+S4cos45 − S6cos45
$$S_{5} = 2049.04 + 3889.09 \bullet \frac{\sqrt{}2}{2} + 11202.88 \bullet \frac{\sqrt{}2}{2}$$
|
S6 = −11202, 88
S5 = 12720.67
|
4. |
$$\sum_{}^{}F_{x} = 0 = {- S}_{3} - S_{6}cos45 + S_{7}cos45 + S_{8}$$
$$\sum_{}^{}{F_{y} = 0 =}S_{6}sin45 + S_{7}sin45$$
$$S_{7} = \frac{{- S}_{6}cos45}{cos45} = {- S}_{6}$$
S8 = S3 + S6cos45 − S7cos45
$$S_{8} = - 3500 - 11202.88 \bullet \frac{\sqrt{}2}{2} - 11202.88 \bullet \frac{\sqrt{}2}{2}$$
|
S7 = 11202.88
S8 = −19343.26
|
5. |
$$\sum_{}^{}F_{x} = 0 = - S_{5} + R_{\text{Bx}} + S_{10} - S_{7}cos45 + S_{9}cos45$$
$$\sum_{}^{}{F_{y} = 0 =} - R_{\text{By}} - S_{7}sin45 - S_{9}sin45$$
$$S_{9} = \frac{- R_{\text{By}} - S_{7}sin45}{sin45}$$
$$S_{9} = \frac{16457.72 - 11202.88 \bullet \frac{\sqrt{}2}{2}}{\frac{\sqrt{}2}{2}}$$
S10 = S5 − RBx + S7cos45 − S9cos45
$$S_{10} = 12780.67 - 3049.04 + 11202.88 \bullet \frac{\sqrt{}2}{2} - 12064.78 \bullet \frac{\sqrt{}2}{2}$$
|
S9 = 12064.78
S10 = 9068.17
|
6. |
$$\sum_{}^{}F_{x} = 0 = {- S}_{8} - S_{9}cos45{+ S}_{11}cos45 + S_{12}$$
$$\sum_{}^{}{F_{y} = 0 =}S_{9}sin45 + S_{11}sin45 - F_{4}$$
$$S_{11} = \frac{F_{4} - S_{9}sin45}{sin45}$$
$$S_{11} = \frac{2500 - 12064.78 \bullet \frac{\sqrt{}2}{2}}{\frac{\sqrt{}2}{2}}$$
S12 = S8 + S9cos45 − S11cos45
$$S_{12} = - 19343.26 + 12064.78 \bullet \frac{\sqrt{}2}{2} + 8529.29 \bullet \frac{\sqrt{}2}{2}$$
|
S11 = −8529.25
S12 = −4781.08
|
7. |
$$\sum_{}^{}F_{x} = 0 = {- S}_{10} - S_{11}cos45 + S_{13}cos45$$
$$\sum_{}^{}{F_{y} = 0 =} - F_{5} - S_{11}sin45 - S_{13}sin45$$
$$S_{13} = \frac{- S_{11}sin45 - F_{5}}{sin45}$$
$$S_{13} = \frac{8529.25 \bullet \frac{\sqrt{}2}{2} - 3000}{\frac{\sqrt{}2}{2}}$$
|
S13 = 4286.61
|
8. |
$$\sum_{}^{}F_{x} = 0 = - S_{12} - S_{13}cos45 - F_{6}cos60$$
$$\sum_{}^{}{F_{y} = 0 = S_{13}sin45 - F_{6}sin60}$$
$$S_{13} = \frac{F_{6}sin60}{sin45} = 4286.61$$
S12 = S13cos45 − F6cos60 = −4781.08
|
Węzeł policzony dla sprawdzenia: takie same wyniki jak wyżej, czyli policzono dobrze |