Równania różniczkowe liniowe rzędu II o stałych współczynnikach:
y’’-2y’+y=0
y’’-y’-2y=0
y’’+6y’+25y=0
y’’-2y=0
y’’+3y’+2y=0
y’’+2y’+2y=0
a) y’’-2y’+y=0
τ2 − 2τ + 1 = 0
=(−2)2 − 4 * 1 * 1 = 0
τ1 = τ2
$$\ \tau_{1} = \frac{- b}{2a} = \frac{2}{2} = 1\ $$
y(t) = c1 * et + c2 * tet
b)y’’-y’-2y=0
τ2 − τ − 2 = 0
= 12 − 4 * (−2) * 1 = 9
$$\text{\ \ }\sqrt{} = 3\ $$
$$\text{\ \ }\tau_{1} = \frac{- b - \ \sqrt{}}{2a} = \frac{1 - 3}{2} = - 1 = > y_{1} = e^{- 1t}\ $$
$$\text{\ \ \ }\tau_{2} = \frac{- b + \ \sqrt{}}{2a} = \frac{1 + 3}{2} = 2 = > y_{2} = e^{2t}\ $$
y(t) = c1 * e−t + c2 * e2t
c)y’’+6y’+25y=0
τ2 + 6τ + 25 = 0
= 62 − 4 * 25 * 1 = 36 − 100 = 64j2
$$\text{\ \ }\sqrt{} = 8j\ $$
$$\text{\ \ }\tau_{1} = \frac{- b - \ \sqrt{}}{2a} = \frac{- 6 - 8j}{2} = - 3 - 4j = > y_{1} = e^{- 3t}cos4t\ $$
$$\text{\ \ \ }\tau_{2} = \frac{- b + \ \sqrt{}}{2a} = \frac{- 6 + 8j}{2} = - 3 + 4 = > y_{2} = e^{- 3t}sin4t\ $$
y(t) = e−3t(c1cos4t+c2sin4t) c1,c2 ∈ R
e) y’’+3y’+2y=0
τ2 + 3τ + 2 = 0
= 32 − 4 * 2 * 1 = 1
$$\sqrt{} = 1$$
$$\text{\ \ }\tau_{1} = \frac{- b - \ \sqrt{}}{2a} = \frac{- 3 - 1}{2} = - 2 = > y_{1} = e^{- 2t}\ $$
$$\text{\ \ \ }\tau_{2} = \frac{- b + \ \sqrt{}}{2a} = \frac{- 3 + 1}{2} = - 1 = > y_{2} = e^{- t}$$
y(t) = c1 * e−2t + c2 * te−t
F)y’’+2y’+2y=0
τ2 + 2τ + 2 = 0
= 22 − 4 * 2 * 1 = 0
τ1 = τ2
$$\ \ \tau = \frac{- b}{2a} = \frac{- 2}{2} = - 1 = > y_{1} = e^{- t}\ $$
y(t) = c1 * e−t + c2 * te−t