RÓWNANIE RÓŻNICZKOWE LINIOWE – METODA UZMIENNIANIA STAŁEJ |
---|
PRZYKŁAD |
y′ + 2xy = 0 |
$$\frac{\text{dy}}{\text{dx}} = - 2xy\ \ / \bullet \frac{\text{dx}}{y}$$ |
$$\frac{\text{dy}}{y} = - 2xdx\ \ / \bullet \int_{}^{}{}$$ |
$$\int_{}^{}\frac{1}{y}dy = - 2\int_{}^{}\text{xdx}$$ |
$$\ln\left| y \right| = - 2 \bullet \frac{1}{2}x^{2} + C$$ |
y = e−x2 + C |
y = e−x2 • eC |
CORLJ |
y′+2xy = xe−x2 |
CORLN |
y′ = C′(x) • e−x2 + C(x) • e−x2 • (−2x) |
$$C^{'}\left( x \right)e^{- x^{2}} - 2xe^{- x^{2}}C\left( x \right) + \mathbf{2}\mathbf{x}C\left( x \right)e^{{- x}^{2}} = \mathbf{x}\mathbf{e}^{\mathbf{- x}^{\mathbf{2}}}\ / \bullet \frac{1}{e^{{- x}^{2}}}$$ |
C′(x) − 2xC(x) + 2xC(x) = x |
C′(x) = x |
$$\frac{\text{dC}\left( x \right)}{\text{dx}} = x\ / \bullet dx$$ |
dC(x) = xdx /∫ |
$$C\left( x \right) = \frac{1}{2}x^{2} + C_{1}$$ |
$$y = \left( \frac{1}{2}x^{2} + C_{1} \right)e^{{- x}^{2}}$$ |
$$y = \frac{1}{2}x^{2}e^{{- x}^{2}} + C_{1}e^{{- x}^{2}}$$ |