$F_{\text{od}} = \frac{mV^{2}}{R}\text{\ \ \ }F_{g} = G\frac{\text{mM}}{R^{2}}\text{\ \ }F_{c} = 2m\ V \times \omega\ \ E_{k} = \ \frac{mV^{2}}{2}\text{\ \ }E_{p} = mgh\ \ \ \gamma\left( r \right) = \frac{F}{m}\ \ V = \omega r\ \ \ a_{s} = \frac{\alpha}{\omega}\text{V\ \ \ }a_{n} = - r\omega^{2}$
$$V_{p} = \sqrt{\frac{2kT}{m}} = \ \sqrt{\frac{2RT}{\mu}}\ \ \ \ k = \frac{R}{N_{A}}\ \ \ \mu = mN_{A} = \frac{m}{n}\text{\ \ \ }c_{v} = \ \frac{\text{dQ}}{\text{dT}} = \frac{\text{dU}}{\text{dT}}\ \ \ dQ = cmdT\ \ pV = nRT = NkT\ \ \ dW = pdV$$
$= \frac{1}{3}\rho < V > c_{V}\lambda\ \ \ \ D = \frac{1}{3} < V > \lambda\ \ \ \ \ \eta = \frac{1}{3}\rho < V > \lambda\ \ \ < V > = \sqrt{\frac{8kT}{\text{πm}}}\ \ \ \lambda = \frac{1}{nd^{2}\pi}\ \ = \frac{Q}{t}\frac{l}{ST}\ \ \eta = \ \frac{T_{1} - T_{2}}{T_{1}} = \frac{W}{Q}$
$$N\left( V \right) = 4\pi N({\frac{m}{2\pi kT})}^{\frac{3}{2}}V^{2}e^{- \frac{\text{mV}}{2kT}^{2}}\ {< E}_{k} \geq \frac{i}{2}NkT\ \ \ U = E_{\text{kpost.}} + E_{\text{kobr.}}\text{\ \ }\text{\ c}_{p} = c_{v} + R\ \ \ \ \text{\ ϰ}_{\text{adiab.}} = \ \frac{c_{p}}{c_{v}}\text{\ \ \ \ }\left( p + \frac{a}{V^{2}} \right)\left( V - b \right) = RT$$
$dS = \frac{\text{dQ}}{T}\ \ \ S = kln\omega\ $
$$F = \frac{q_{1}q_{2}}{4\pi\varepsilon_{0}\varepsilon_{r}r^{2\ }}\ \ \ E = \frac{F}{q} = \frac{q_{1}}{4\pi\varepsilon_{0}\varepsilon_{r}r^{2\ }}\text{\ \ }\oint_{}^{}\text{EdS} = \ \frac{Q_{\text{wewn.}}}{\varepsilon_{0}\varepsilon_{r}}\ \ \ \lambda = \frac{Q}{l}\ \ \ \ \rho = \ \frac{Q}{V}\ \ \sigma = \frac{Q}{S}\text{\ \ }$$
$\ E_{kuli\ r < R\ } = \ \frac{Q}{4\pi\varepsilon_{0}\varepsilon_{r}rR^{3\ }}\text{\ \ \ }E_{kuli\ r > R\ } = \ \frac{Q}{4\pi\varepsilon_{0}\varepsilon_{r}r^{2}}\text{\ \ \ \ }\text{V\ }_{\text{pot.}}\left( r \right) = \ \frac{E_{p}\left( r \right)}{q}\ \ \ C = \frac{Q}{V} = \frac{\varepsilon_{0}S}{d}\text{\ \ \ }E_{e} = \frac{Q^{2}}{2C}\ $
$$F_{l} = qV \times B\ \ \ \ \ F_{\text{el}} = BIl\ \ \ \oint_{}^{}{Bdl = \mu_{r}}\mu_{0}I\ \ \ dB = \frac{\mu_{0}\mu_{r}\text{\ I\ dl\ sinα\ \ \ }}{4\pi r^{2}}\text{\ \ }B_{\text{n.p.p}} = \ \frac{\mu_{0}\mu_{r}\text{\ I\ \ }}{4\pi r}\ \left( sin\beta 1 - sin\beta 2 \right)\text{\ \ }B_{\text{cewki}} = \ \mu_{0}\text{nI}$$
$n = \frac{N}{l}\text{\ \ \ }B_{\text{w.s.o}} = \frac{\mu_{0}\mu_{r}\text{\ I\ \ }}{2r}\text{\ \ }B_{piersc.} = \frac{\mu_{0}\mu_{r}\text{\ I}R^{2}\text{\ \ }}{2\left( R^{2} + x^{2} \right)^{\frac{3}{2}}}\ \ L = \ \mu_{0}\frac{SN^{2}}{l}\text{\ \ \ \ }\frac{\text{mV}^{2}}{2} = qU\ \text{\ \ \ E}_{l} = \frac{Li^{2}}{2}\ \ \ \ \varepsilon = - \frac{\text{dϕ}}{\text{dt}} = BlV\ \ \ d\phi = BdS$
$$\beta = \frac{R}{2L}\text{\ \ }\omega_{0} = \frac{1}{\sqrt{\text{LC}}}\ \ \ \omega = \sqrt{{\omega_{0}}^{2} - \beta^{2}}\ \ \ \ U = \frac{Q}{C}\ \ \ \ \Lambda = ln\frac{E(t)}{E(t + T)} = \beta T\ \ \ \lambda = VT = \frac{V}{f}\ \ \ \ k = \frac{2\pi}{\lambda}\ \ \ c = \frac{1}{\sqrt{\mu_{0}\varepsilon_{0}}}\ \ \ I = \frac{E}{\text{St}} = \frac{E_{0}H_{0}}{2}$$
$E_{0} = VB_{0}\text{\ \ \ }\frac{E_{0}}{H_{0}} = \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}\text{\ \ \ \ \ }\oint_{}^{}{BdS = 0\ }\text{\ \ \ \ }\oint_{}^{}{Edl = \varepsilon} = \frac{d\phi_{b}}{\text{dt}}\text{\ \ \ \ }\oint_{}^{}{Bdl =}\ \mu_{0}\mu_{r}\frac{d\phi_{e}}{\text{dt}} + \mu_{0}\text{I\ \ \ \ \ }S_{p} = \frac{1}{\mu_{0}}E \times B$
$$r_{n} = n^{2}\frac{h^{2}\varepsilon_{0}}{\pi\text{me}^{2}}\ \ \ \ V = \sqrt{\frac{e^{2}}{4\pi\varepsilon_{0}r}}\ \ \ p = mV\ \ \ \ L = pr\ \ \ E_{k} = \ \frac{e^{2}}{8\pi\varepsilon_{0}r}\text{\ \ \ }E_{p} = \ - \frac{e^{2}}{4\pi\varepsilon_{0}r}\text{\ \ }E_{c} = \ - \frac{e^{2}}{8\pi\varepsilon_{0}r}\ \ \ \ p_{x}x \geq h\ \ \ \ \ Et \geq h\ \ \ $$
$\lambda = hv - stala\ pl.czestosc\ drgan\ \ \ h = \frac{c}{\lambda}\text{\ \ \ \ }\frac{1}{\lambda} = R\left( \frac{1}{{n2}^{2}} - \frac{1}{{n1}^{2}} \right)\ \ \ \lambda = \frac{h}{p}\text{\ \ \ \ }\mathbf{\psi}\left( \mathbf{x} \right)\mathbf{=}\sqrt{\frac{\mathbf{2}}{\mathbf{l}}}\mathbf{sin(}\frac{\mathbf{\text{nπx}}}{\mathbf{l}}\mathbf{)}$