PN = 12 kW
UN = 220 V
IN = 62 A
nN = 1880 $\frac{\text{obr}}{\min}$
RN = 0,01 Ω
LN = 200 mU
I = 0,9 kg * m2
Tm = 5 + 0,028 n (n w $\frac{\text{obr}}{\min}$)
Rr = 1 Ω
UN = i (RN + Rr) + LN * $\frac{\text{di}}{\text{dt}}$ + ceiΩ
I $\frac{d\mathrm{\Omega}}{\text{dt}}$ = CM * i2 _ Tm
$\frac{\text{di}}{\text{dt}}$ = $\frac{U - i\ \left( R + R_{\text{r\ }} \right) + \ ice\ *\ \mathrm{\Omega}}{L}$
$\frac{\text{dΩ}}{\text{dt}}$ = $\frac{C_{M}*\ i^{2} - \ T_{M}}{I}$
CE =$\frac{E_{N}}{I_{N}*\ n_{N}}$ = $\frac{U_{N} - \ I_{N}*\ R_{N}}{I_{N}*\ n_{N}}$ = $\frac{220 - 62*0,01}{62*1880}$ = 0,00188
MN = 9,55 * $\frac{P_{N}}{n_{N}}$ = 9,55 * $\frac{12*\ 10^{3}}{1880}$ = 60,9 Nm
MN = CM * IN2 => CM = $\frac{M_{N}}{{I_{N}}^{2}}$ = 0,0158