233 Projekt wykonawczy.
3.1 Płyta
3.1.1 Dane wyjściowe
- beton fcd=21,4 Mpa
- stal fyd=420Mpa B500SP
- otulina XC3 cmin=25mm
- otulina REI90 a=25mm
3.1.2 Zestawienie obciążeń:
Wyszczególnienie | Obc. Char. | γf | Obc. obliczeniowe |
---|---|---|---|
>1 | =1 | ||
Gładz cementowa2,5cm 0,025*21 | 0,52 | 1,35 | 1 |
Płytki PVC | 0,07 | 1,35 | 1 |
Styropian 0,03*0,45 | 0,014 | 1,35 | 1 |
Płyta żelbetowa 0,14 | 3,5 | 1,35 | 1 |
Tynk cem-wap 19*0,02 | 0,38 | 1,35 | 1 |
SUMA | gk=4,484 | ||
Obc zmienne | qk=8 | 1,5 | 1 |
gk=4,484kN/m
gd1=6,036kN/m
gd2=4,484kN/m
qk=8kN/m
qd=12kN/m
Δg= gd1- gd2=6,036-4,484=1,552kN/m
$\overline{q}$=qd +Δg=13,552kN/m
3.1.3 Schemat statyczny
1. MEd, A − Bmax = 3, 998kNm
2. MEd, B − Cmax = 3, 044kNm
3. MEd, C − Cmax = 3, 215kNm
4. MEd, Bmin = −6, 603kNm
5. MEd, Cmin = −6, 259kNm
6. MEd, Bkrmin = −4, 827kNm
7. MEd, Ckrmin = −4, 517kNm
$$8.\ {\overline{M}}_{B - C} = \frac{1}{3}\left( M_{Ed,B - C}^{\min} + max\left\{ M_{Ed,B}^{\min} + M_{Ed,C}^{\min} \right\} \right) = \frac{1}{3}\left( 3,044 + 6,603 \right) = 3,216kNm$$
$$9.\ {\overline{M}}_{C - C} = \frac{1}{3}\left( M_{Ed,C - C}^{\min} + M_{Ed,C}^{\min} \right) = \frac{1}{3}\left( 3,215 + 6,259 \right) = 3,158kNm$$
3.1.4 Wymiarowanie ze względu na zginanie:
$$A_{S,min} = 0,26*\left( \frac{f_{\text{ctm}}}{f_{\text{yk}}} \right)*b*d \geq 0,0013*b*d$$
$$0,26*\left( \frac{2,9}{500} \right)*100*10,1 \geq 0,0013*100*10,1$$
1, 53cm2 ≥ 1, 31cm2 ok.
$$\sum_{}^{}{M_{As1,A - B} = f_{\text{cd}}*b*x_{\text{eff}}*\left( d - 0,5x_{\text{eff}} \right)} - M_{\text{Ed}} = 0$$
21400kPa*1,0m*xeff*(0,101m-0,5*xeff)-3,998kNm=0
Xeff=0,0015m
$$\xi_{\text{eff}} = \frac{0,0015m}{0,101} = 0,015$$
$$\xi_{eff,lim} = 0,8*\frac{\varepsilon_{\text{ck}}}{\varepsilon_{\text{ck}} + \varepsilon_{\text{yd}}} = 0,8*\frac{3,5}{3,5 + 2,15} = 0,496$$
ξeff, lim > ξeff ok.
fcd * b * xeff = fyd * AS1
$A_{S1} = \frac{f_{\text{cd}}}{f_{\text{yd}}}*b*x_{\text{eff}} = \frac{21,4}{420}*1,0*0,0015 =$0,95cm2
AS, min = 1, 53cm2
Przyjęto 6Φ6 =1,69cm2
$$\sum_{}^{}{M_{As1,B - C} = f_{\text{cd}}*b*x_{\text{eff}}*\left( d - 0,5x_{\text{eff}} \right)} - M_{\text{Ed}} = 0$$
21400kPa*1,0m*xeff*(0,101m-0,5*xeff)-3,044kNm=0
Xeff=0,0014m
$$\xi_{\text{eff}} = \frac{0,0014m}{0,101} = 0,014$$
$$\xi_{eff,lim} = 0,8*\frac{\varepsilon_{\text{ck}}}{\varepsilon_{\text{ck}} + \varepsilon_{\text{yd}}} = 0,8*\frac{3,5}{3,5 + 2,15} = 0,496$$
ξeff, lim > ξeff ok.
fcd * b * xeff = fyd * AS1
$A_{S1} = \frac{f_{\text{cd}}}{f_{\text{yd}}}*b*x_{\text{eff}} = \frac{21,4}{420}*1,0*0,0014 =$0,72cm2
AS, min = 1, 53cm2
Przyjęto 6Φ6=1,69cm2
$$\sum_{}^{}{M_{As1,C - C} = f_{\text{cd}}*b*x_{\text{eff}}*\left( d - 0,5x_{\text{eff}} \right)} - M_{\text{Ed}} = 0$$
21400kPa*1,0m*xeff*(0,101m-0,5*xeff)-3,215kNm=0
Xeff=0,0015m
$$\xi_{\text{eff}} = \frac{0,0015m}{0,101} = 0,015$$
$$\xi_{eff,lim} = 0,8*\frac{\varepsilon_{\text{ck}}}{\varepsilon_{\text{ck}} + \varepsilon_{\text{yd}}} = 0,8*\frac{3,5}{3,5 + 2,15} = 0,496$$
ξeff, lim > ξeff ok.
fcd * b * xeff = fyd * AS1
$A_{S1} = \frac{f_{\text{cd}}}{f_{\text{yd}}}*b*x_{\text{eff}} = \frac{21,4}{420}*1,0*0,0015 =$0,76cm2
AS, min = 1, 53cm2
Przyjęto 6Φ6=1,69cm2
$$\sum_{}^{}{M_{As1,B} = f_{\text{cd}}*b*x_{\text{eff}}*\left( d - 0,5x_{\text{eff}} \right)} - M_{\text{Ed}} = 0$$
21400kPa*1,0m*xeff*(0,101m-0,5*xeff)-6,603kNm=0
Xeff=0,0031m
$$\xi_{\text{eff}} = \frac{0,0031m}{0,101} = 0,0307$$
$$\xi_{eff,lim} = 0,8*\frac{\varepsilon_{\text{ck}}}{\varepsilon_{\text{ck}} + \varepsilon_{\text{yd}}} = 0,8*\frac{3,5}{3,5 + 2,15} = 0,496$$
ξeff, lim > ξeff ok.
fcd * b * xeff = fyd * AS1
$A_{S1} = \frac{f_{\text{cd}}}{f_{\text{yd}}}*b*x_{\text{eff}} = \frac{21,4}{420}*1,0*0,00307 = 1$,58cm2
AS, min = 1, 53cm2
Przyjęto 6Φ6 =1,69cm2.
$$\sum_{}^{}{M_{As1,C} = f_{\text{cd}}*b*x_{\text{eff}}*\left( d - 0,5x_{\text{eff}} \right)} - M_{\text{Ed}} = 0$$
21400kPa*1,0m*xeff*(0,101m-0,5*xeff)-6,259kNm=0
Xeff=0,0029m
$$\xi_{\text{eff}} = \frac{0,0014m}{0,101} = 0,029$$
$$\xi_{eff,lim} = 0,8*\frac{\varepsilon_{\text{ck}}}{\varepsilon_{\text{ck}} + \varepsilon_{\text{yd}}} = 0,8*\frac{3,5}{3,5 + 2,15} = 0,496$$
ξeff, lim > ξeff ok.
fcd * b * xeff = fyd * AS1
$A_{S1} = \frac{f_{\text{cd}}}{f_{\text{yd}}}*b*x_{\text{eff}} = \frac{21,4}{420}*1,0*0,0029 = 1$,50cm2
AS, min = 1, 53cm2
Przyjęto 6Φ6=1,69cm2
$$\sum_{}^{}{M_{As1,Bkr} = f_{\text{cd}}*b*x_{\text{eff}}*\left( d - 0,5x_{\text{eff}} \right)} - M_{\text{Ed}} = 0$$
21400kPa*1,0m*xeff*(0,101m-0,5*xeff)-4,827kNm=0
Xeff=0,0022m
$$\xi_{\text{eff}} = \frac{0,0022m}{0,101} = 0,022$$
$$\xi_{eff,lim} = 0,8*\frac{\varepsilon_{\text{ck}}}{\varepsilon_{\text{ck}} + \varepsilon_{\text{yd}}} = 0,8*\frac{3,5}{3,5 + 2,15} = 0,496$$
ξeff, lim > ξeff ok.
fcd * b * xeff = fyd * AS1
$$A_{S1} = \frac{f_{\text{cd}}}{f_{\text{yd}}}*b*x_{\text{eff}} = \frac{21,4}{420}*1,0*0,0022 = 1,15\text{cm}^{2}$$
AS, min = 1, 53cm2
Przyjęto 6Φ6=1,69cm2
$$\sum_{}^{}{M_{As1,Ckr} = f_{\text{cd}}*b*x_{\text{eff}}*\left( d - 0,5x_{\text{eff}} \right)} - M_{\text{Ed}} = 0$$
21400kPa*1,0m*xeff*(0,101m-0,5*xeff)-4,517kNm=0
Xeff=0,0021m
$$\xi_{\text{eff}} = \frac{0,0021m}{0,101} = 0,021$$
$$\xi_{eff,lim} = 0,8*\frac{\varepsilon_{\text{ck}}}{\varepsilon_{\text{ck}} + \varepsilon_{\text{yd}}} = 0,8*\frac{3,5}{3,5 + 2,15} = 0,496$$
ξeff, lim > ξeff ok.
fcd * b * xeff = fyd * AS1
$$A_{S1} = \frac{f_{\text{cd}}}{f_{\text{yd}}}*b*x_{\text{eff}} = \frac{21,4}{420}*1,0*0,0021 = 1,08\text{cm}^{2}$$
AS, min = 1, 53cm2
Przyjęto 6Φ6=1,69cm2
Pręty główne:
Smax,slabs={2h;250mm}=250mm
Pręty rozdzielcze:
Smax,slabs={3h;400mm}=400mm
3.1.5 Sprawdzenie ze względu na ścinanie:
VEd, max = 19, 554kN
$$k = 1 + \sqrt{\frac{200}{d}} = 1 + \sqrt{\frac{200}{101}} = 2,41 > 2 \rightarrow k = 2.$$
$$\rho_{L} = \frac{A_{\text{SL}}}{d*b} = \frac{1,69\text{cm}^{2}}{10,1*100} = 0,00167$$
$$C_{Rd,c} = \frac{0,18}{\gamma_{c}} = \frac{0,18}{1,4} = 0,129$$
$$V_{Rd,c} = C_{Rd,c}*k\left( 100*\rho_{L}*f_{\text{ck}} \right)^{\frac{1}{3}} = 0,129*{2*\left( 100*0,00167*30 \right)}^{\frac{1}{3}}*b*d = 44,62kN > V_{Ed,max}$$
Przekrój nie wymaga dodatkowego zbrojenia na ścinanie.
3.1.6 Sprawdzenie płyty ze względu na ugięcie:
Dla kat E (pow. magazynowe) wsp. Ψ2=0,8
MEk, max = 2, 412kNm
ξ = 0, 9
$$\sigma_{s} = \frac{M_{Ek,max}}{\xi*d*A_{S1}} = \frac{2,412}{0,9*0,101*1,69*10^{- 4}}157MPa$$
K=1,5
$$\left( \frac{l_{\text{eff}}}{d} \right) \leq \left( \frac{l_{\text{eff}}}{d} \right)_{\max}*\frac{310}{\sigma_{s}}*K$$
$$\left( \frac{2050}{101} \right)20,29 \leq \left( \frac{2050}{101} \right)_{\max}*\frac{310}{157}*1,5 = 60,12\ \ \ ok.$$
4. Żebro ż2
4.1. dane wyjściowe
- beton C30/37; fcd=21,4 MPa; fck=30 MPa; fctm=2,9 Mpa; fctk=2,0 Mpa; Ecm=32GPa
- stal fyd=420Mpa; fyk=500MPa
- Es=200GPa
- otulina XC3 cmin=25mm
- otulina REI90 a=40mm; asd=50mm
4.2 Zestawienie obciążeń
Wyszczególnienie | Obc. Char. | γf | Obc. obliczeniowe |
---|---|---|---|
>1 | =1 | ||
gk,pl*l2,pł | 9,225 | ||
gk,pl*l2,pł | |||
Żebro 0,25x0,2*25 | 1,25 | 1,35 | 1 |
Tynk 0,25*0,02*2*19 | 0,19 | 1,35 | 1 |
Suma | gk=10,66 | ||
Obc. zmienne | qk=16,4 | 1,5 | 1 |
4.3 Schemat statyczny
gk=10,66kN/m
gd1=14,33kN/m
gd2=10,66kN/m
qk=16,4kN/m
qd=24,6kN/m
Δg= gd1- gd2=14,33-10,66=3,67kN/m
$\overline{q}$=qd +Δg=24,6+3,67=28,27kN/m
Obwiednia momentów:
1. MEd, A − Bmax = 99, 66kNm
2. MEd, B − Cmax = 95, 54kNm
3. MEd, C − Cmax = 100, 50kNm
4. MEd, Bmin = −140, 33kNm
5. MEd, Cmin = −144, 85kNm
6. MEd, Bkrmin = −125, 55kNm
7. MEd, Ckrmin = −130, 79kNm
4.4 Wymiarowanie na moment:
Na podporze:
$$b_{1} = b_{2} = \frac{b_{}{- b}_{w}}{2} = \frac{2050 - 250}{2} = 900mm$$
l0 = 0, 85 * l1 = 0, 85 * 4925 = 4186mm
beff, i = 0, 2bi + 0, 1l0 ≤ {0, 2l0;b}
beff, 1 = 0, 2 * 0, 9 + 0, 1 * 4, 186 = 0, 599 < {0,84;0,9}
beff, 1 = beff, 2 = 0, 599
beff = 2 * beff, 1 + bw = 1, 448m
W przęśle środkowym:
$$b_{1} = b_{2} = \frac{b_{}{- b}_{w}}{2} = \frac{2050 - 250}{2} = 900mm$$
l0 = 0, 7 * l1 = 0, 7 * 5800 = 4060mm
beff, i = 0, 2bi + 0, 1l0 ≤ {0, 2l0;b}
beff, 1 = 0, 2 * 0, 9 + 0, 1 * 4, 06 = 0, 586 < {0,812;0,9}
beff, 1 = beff, 2 = 0, 586
beff = 2 * beff, 1 + bw = 1, 422m
Wysokośc użyteczna żebra:
a=40mm;cnom=25mm;⌀strz = 8mm; ⌀ = 20mm
a1=cnom+Φstrz+Φ/2=25+8+10=43=45mm
d=hż-a1=390-45=345mm
dwew=345+0,3333*150=395mm
Sprawdzenie rzeczywistego kształtu rozkładu momentów w żebrze:
MF = beff * hf * fcd * (d−0,5hf)
Dla przęsła skrajnego:
MF = beff * hf * fcd * (d−0,5hf) = 1, 488m * 0, 14m * 21400kPa * (0,345−0,5*0,14) = 1226kNm > 145kNm
Dla przęseł srodkowych:
MF = beff * hf * fcd * (d−0,5hf) = 1, 422m * 0, 14m * 21400kPa * (0,345−0,5*0,14) = 1172kNm > 145kNm
Przekrój jest pozornie teowy.
$$\mu_{\text{sc}} = \frac{M_{\text{Ed}}}{f_{\text{cd}}*b_{\text{eff}}*d^{2}} = \frac{99,66}{21400*1,488*{0,345}^{2}} = 0,027 = \zeta = 0,986;$$
$$A_{s1} = \frac{M_{\text{Ed}}}{f_{\text{yd}}*d*\zeta} = \frac{99,66}{420000*0,345*0,986} = 0,000698m^{2} = 6,98cm^{2}$$
$$\mu_{\text{sc}} = \frac{M_{\text{Ed}}}{f_{\text{cd}}*b_{\text{eff}}*d^{2}} = \frac{95,54}{21400*1,422*{0,345}^{2}} = 0,026 = \zeta = 0,986;$$
$$A_{s1} = \frac{M_{\text{Ed}}}{f_{\text{yd}}*d*\zeta} = \frac{95,54}{420000*0,345*0,986} = 0,000669m^{2} = 6,69cm^{2}$$
$$\mu_{\text{sc}} = \frac{M_{\text{Ed}}}{f_{\text{cd}}*b_{\text{eff}}*d^{2}} = \frac{100,5}{21400*1,422*{0,345}^{2}} = 0,028 = \zeta = 0,985;$$
$$A_{s1} = \frac{M_{\text{Ed}}}{f_{\text{yd}}*d*\zeta} = \frac{100,5}{420000*0,345*0,985} = 0,000704m^{2} = 7,04cm^{2}$$
$$\mu_{\text{sc}} = \frac{M_{\text{Ed}}}{f_{\text{cd}}*b_{\text{eff}}*d^{2}} = \frac{140,33}{21400*0,2*{0,395}^{2}} = 0,21 = \zeta = 0,88;$$
$$A_{s1} = \frac{M_{\text{Ed}}}{f_{\text{yd}}*d*\zeta} = \frac{140,33}{420000*0,395*0,88} = 0,000961m^{2} = 9,61cm^{2}$$
$$\mu_{\text{sc}} = \frac{M_{\text{Ed}}}{f_{\text{cd}}*b_{\text{eff}}*d^{2}} = \frac{144,85}{21400*0,2*{0,395}^{2}} = 0,217 = \zeta = 0,876;$$
$$A_{s1} = \frac{M_{\text{Ed}}}{f_{\text{yd}}*d*\zeta} = \frac{144,85}{420000*0,395*0,876} = 0,000997m^{2} = 9,97cm^{2}$$
$$\mu_{\text{sc}} = \frac{M_{\text{Ed}}}{f_{\text{cd}}*b_{\text{eff}}*d^{2}} = \frac{125,55}{21400*0,2*{0,345}^{2}} = 0,246 = \zeta = 0,856;$$
$$A_{s1} = \frac{M_{\text{Ed}}}{f_{\text{yd}}*d*\zeta} = \frac{125,55}{420000*0,345*0,856} = 0,00101m^{2} = 10,01cm^{2}$$
$$\mu_{\text{sc}} = \frac{M_{\text{Ed}}}{f_{\text{cd}}*b_{\text{eff}}*d^{2}} = \frac{130,79}{21400*0,2*{0,345}^{2}} = 0,258 = \zeta = 0,848;$$
$$A_{s1} = \frac{M_{\text{Ed}}}{f_{\text{yd}}*d*\zeta} = \frac{130,79}{420000*0,345*0,848} = 0,00106m^{2} = 10,6cm^{2}$$
Minimalna powierzchnia zbrojenia na zginanie:
fctm=2,9Mpa
$$A_{s,min} = 0,26*\frac{f_{\text{ctm}}}{f_{yk}}*b*d \geq 0,0013b*d;$$
$$A_{s,min} = 0,26*\frac{2,9}{500}*0,2*0,345 \geq 0,0013*0,2*0,345$$
As, min = 1, 04cm2 ≥ 0, 897cm2;
Minimalna odległośc między prętami:
Max(Φ,20mm,dg+5mm)=max(20,20,21mm)=21mm
Zbrojenie górne4Φ20=12,57cm2;
Zbrojenie dolne3Φ20=9,42cm2;
Rozmieszczenie prętów zbrojeniowych:
Nośnośc momentowa:
4 pręty:
$$x_{\text{eff}} = \frac{A_{s1}*f_{\text{yd}}}{f_{\text{cd}}*b_{w}} = \frac{0,001257*420}{21,4*0,2} = 0,1234m$$
S=3,14*4,5=14,14cm3
A=12,57cm2
$$x_{s} = \frac{S}{A} = \frac{14,14}{12,57} = 1,13cm$$
d=0,345-0,011=0,334m
MRd=As1*fyd*(d-0,5xeff)=0,001257*420000*(0,334-0,5*0,1234)=143,75kNm>130,79kNm
3 pręty
$$x_{\text{eff}} = \frac{A_{s1}*f_{\text{yd}}}{f_{\text{cd}}*b_{w}} = \frac{0,000943*420}{21,4*0,2} = 0,0925m$$
MRd=As1*fyd*(d-0,5xeff)=0,000943*420000*(0,345-0,5*0,0925)=118,26kNm
2 pręty:
$$x_{\text{eff}} = \frac{A_{s1}*f_{\text{yd}}}{f_{\text{cd}}*b_{w}} = \frac{0,000628*420}{21,4*0,2} = 0,0617m$$
MRd=As1*fyd*(d-0,5xeff)=0,000628*420000*(0,345-0,5*0,0617)=82,91kNm
Zbrojenie dołem:
Podpora A:
3 pręty:
$$x_{\text{eff}} = \frac{A_{s1}*f_{\text{yd}}}{f_{\text{cd}}*b_{w}} = \frac{0,000943*420}{21,4*1,488} = 0,1244m$$
MRd=As1*fyd*(d-0,5xeff)=0,000943*420000*(0,345-0,5*0,1244)=134,18kNm
2 pręty
$$x_{\text{eff}} = \frac{A_{s1}*f_{\text{yd}}}{f_{\text{cd}}*b_{w}} = \frac{0,000628*420}{21,4*1,488} = 0,0828m$$
MRd=As1*fyd*(d-0,5xeff)=0,000628*420000*(0,345-0,5*0,0828)=89,9kNm
Podpora B:
3 pręty:
$$x_{\text{eff}} = \frac{A_{s1}*f_{\text{yd}}}{f_{\text{cd}}*b_{w}} = \frac{0,000943*420}{21,4*1,422} = 0,1301m$$
MRd=As1*fyd*(d-0,5xeff)=0,000943*420000*(0,345-0,5*0,1301)=134,06kNm
2 pręty
$$x_{\text{eff}} = \frac{A_{s1}*f_{\text{yd}}}{f_{\text{cd}}*b_{w}} = \frac{0,000628*420}{21,4*1,422} = 0,0867m$$
MRd=As1*fyd*(d-0,5xeff)=0,000628*420000*(0,345-0,5*0,0828)=89,85kNm
Wyznaczenie aL
lbd = α1 * α2 * α3 * α4 * lb, rqd ≥ lb, min
$$l_{b,rqd} = \frac{\varnothing}{4}*\frac{\sigma_{\text{sd}}}{f_{\text{bd}}};$$
fbd = 2, 25 * η1 * η1 * fctd
η1 = 1, 0
η2 = 1, 0
fctd = 1, 4MPa
fbd = 2, 25 * η1 * η1 * fctd=2,25*1*1*1,4=3,15Mpa
⌀ = 20mm
$$\sigma_{\text{sd}} = f_{\text{yd}}*\frac{A_{s,req}}{A_{s,prov}} = 420*\frac{1,67}{6,28} = 111,63MPa$$
$$l_{b,rqd} = \frac{\varnothing}{4}*\frac{\sigma_{\text{sd}}}{f_{\text{bd}}} = \frac{20}{4}*\frac{111,63}{3,15} = 177,19mm$$
lb, min = max{0, 3lb, rqd;10ϕ;100mm} = 200mm
α1 − α5 = 1, 0
lbd = lb, min = 200mm
Długośc zakotwienia prętów na przęśle:
lbd = α1 * α2 * α3 * α4 * lb, rqd ≥ lb, min
$$l_{b,rqd} = \frac{\varnothing}{4}*\frac{\sigma_{\text{sd}}}{f_{\text{bd}}};$$
fbd = 2, 25 * η1 * η1 * fctd
η1 = 0, 7
η2 = 1, 0
fctd = 1, 4MPa
fbd = 2, 25 * η1 * η1 * fctd=2,25*0,7*1*1,4=2,21Mpa
⌀ = 20mm
$$\sigma_{\text{sd}} = f_{\text{yd}}*\frac{A_{s,req}}{A_{s,req}} = 420*\frac{6,98}{9,42} = 279,99MPa$$
$$l_{b,rqd} = \frac{\varnothing}{4}*\frac{\sigma_{\text{sd}}}{f_{\text{bd}}} = \frac{20}{4}*\frac{279,99}{2,21} = 634mm$$
lb, min = max{0, 3lb, rqd;10ϕ;100mm} = 200mm
α1 − α5 = 1, 0
lbd = lb, rqd = 640mm
Długośc zakotwienia prętów górnych nad podpora A
lbd = α1 * α2 * α3 * α4 * lb, rqd ≥ lb, min
$$l_{b,rqd} = \frac{\varnothing}{4}*\frac{\sigma_{\text{sd}}}{f_{\text{bd}}};$$
fbd = 2, 25 * η1 * η1 * fctd
η1 = 0, 7
η2 = 1, 0
fctd = 1, 4MPa
fbd = 2, 25 * η1 * η1 * fctd=2,25*0,7*1*1,4=2,21Mpa
⌀ = 20mm
$$\sigma_{\text{sd}} = f_{\text{yd}}*\frac{A_{s,req}}{A_{s,req}} = 420*\frac{1,67}{9,42} = 74,45MPa$$
$$l_{b,rqd} = \frac{\varnothing}{4}*\frac{\sigma_{\text{sd}}}{f_{\text{bd}}} = \frac{20}{4}*\frac{74,45}{2,21} = 168mm$$
lb, min = max{0, 3lb, rqd;10ϕ;100mm} = 200mm
α1 − α5 = 1, 0
lbd = lb, min = 200mm
Długośc zakotwienia prętów górnych nad podpora B
lbd = α1 * α2 * α3 * α4 * lb, rqd ≥ lb, min
$$l_{b,rqd} = \frac{\varnothing}{4}*\frac{\sigma_{\text{sd}}}{f_{\text{bd}}};$$
fbd = 2, 25 * η1 * η1 * fctd
η1 = 0, 7
η2 = 1, 0
fctd = 1, 4MPa
fbd = 2, 25 * η1 * η1 * fctd=2,25*0,7*1*1,4=2,21Mpa
⌀ = 20mm
$$\sigma_{\text{sd}} = f_{\text{yd}}*\frac{A_{s,req}}{A_{s,req}} = 420*\frac{6,28}{9,42} = 279,99MPa$$
$$l_{b,rqd} = \frac{\varnothing}{4}*\frac{\sigma_{\text{sd}}}{f_{\text{bd}}} = \frac{20}{4}*\frac{279,99}{2,21} = 634mm$$
lb, min = max{0, 3lb, rqd;10ϕ;100mm} = 200mm
α1 − α5 = 1, 0
lbd = lb, min = 640mm
Wymiarowanie na ścinanie:
Obwiednia sił tnących:
VEdA, kr = 83, 22kN
VEdA′ = 69, 8kN
VEdB, L, kr = 122, 93kN
VEdB′ = 109, 5kN
VEdB, P, kr = 126, 2kN
VEdB′, P = 112, 8kN
VEdC, L, kr = 124, 7kN
VEdC′ = 111, 3kN
VEdC, P, kr = 126, 98kN
VEdC′, P = 113, 5kN
Podpora skrajna:
$$V_{Rd,C}^{} = \left\lbrack C_{Rd,c}*k*\left( 100*\varrho_{L}*f_{\text{ck}} \right)^{\frac{1}{3}} \right\rbrack*b_{c}*d$$
$$C_{Rd,c} = \frac{0,18}{\gamma_{C}} = \frac{0,18}{1,4} = 0,129$$
$$k = 1 + \sqrt{\frac{200}{d}} = 1 + \sqrt{\frac{200}{345}} = 1,76 < 2,0$$
$$\varrho_{L} = \frac{A_{\text{SL}}}{b*d} = \frac{9,42}{20*34,5} = 0,01365$$
$$V_{Rd,C}^{} = \left\lbrack C_{Rd,c}*h*\left( 100*\varrho_{L}*f_{\text{ck}} \right)^{\frac{1}{3}} \right\rbrack*b_{c}*d =$$
$\left\lbrack 0,129*1,76*\left( 100*0,01365*30 \right)^{\frac{1}{3}} \right\rbrack*200*345 = 54kN > \nu_{\min}*b_{w}*d$=30,981kN ok
$$\nu_{\min} = 0,035*k^{\frac{3}{2}}*f_{\text{ck}}^{\frac{1}{2}} = 0,035*2,34*5,48 = 0,449$$
VRd, CA < VEdA′
Podpora B,C (ze względu na podobnieństwo wartości sił przekrojowych oraz te same przekroje zbrojenia-licze raz dla max sil przekrojowych):
$$V_{Rd,C}^{} = \left\lbrack C_{Rd,c}*k*\left( 100*\varrho_{L}*f_{\text{ck}} \right)^{\frac{1}{3}} \right\rbrack*b_{c}*d$$
$$C_{Rd,c} = \frac{0,18}{\gamma_{C}} = \frac{0,18}{1,4} = 0,129$$
$$k = 1 + \sqrt{\frac{200}{d}} = 1 + \sqrt{\frac{200}{345}} = 1,76 < 2,0$$
$$\varrho_{L} = \frac{A_{\text{SL}}}{b*d} = \frac{12,57}{20*34,5} = 0,0182$$
$$V_{Rd,C}^{} = \left\lbrack C_{Rd,c}*h*\left( 100*\varrho_{L}*f_{\text{ck}} \right)^{\frac{1}{3}} \right\rbrack*b_{c}*d =$$
$\left\lbrack 0,129*1,76*\left( 100*0,0182*30 \right)^{\frac{1}{3}} \right\rbrack*200*345 = 59,43kN > \nu_{\min}*b_{w}*d$=30,981kN ok
$$\nu_{\min} = 0,035*k^{\frac{3}{2}}*f_{\text{ck}}^{\frac{1}{2}} = 0,035*2,34*5,48 = 0,449$$
VRd, CB < VEdB′, C′
Na wszystkich podporach należy obliczyc dodatkowe zbrojenie na ścinanie.
Strzemiona 90 ̊, Φ8.
Podpora skrajna:
$$l_{t} = \frac{V_{\text{Ed}}^{\text{kr}} - V_{Rd,c}^{}}{g + q} = \frac{83,22 - 54}{10,66 + 16,4} = 1,07m$$
1,8d=0,621m
V0,621=63,91kN
$$s \leq \frac{A_{\text{sw}}}{V_{\text{Ed}}}*z*f_{\text{ywd}}*ctg\theta = \frac{0,0001005}{63,91}*0,311*420000*2 = 0,411m$$
Sl,max=0,75*d*(1+ctgα)=0,75*0,345*1=0,2587m
$$\upsilon = 0,6*\left( 1 - \frac{f_{\text{ck}}}{350} \right) = 0,6*\left( 1 - \frac{30}{350} \right) = 0,55$$
$${V_{\text{Rd}}^{\max}}^{'} = \frac{b_{w}*z*\upsilon*f_{\text{cd}}}{ctg\theta + tg\theta} = \frac{0,2*0,311*0,55*21400}{2 + 0,5} = 291,84kN$$
Strzemiona Φ8 co 250mm.
Podpora B/C:
$$l_{t} = \frac{V_{\text{Ed}}^{\text{kr}} - V_{Rd,c}^{}}{g + q} = \frac{126,98 - 54}{10,66 + 16,4} = 2,69m$$
1,8d=0,621m
V0,621=107,68kN
$$s \leq \frac{A_{\text{sw}}}{V_{\text{Ed}}}*z*f_{\text{ywd}}*ctg\theta = \frac{0,0001005}{107,68}*0,311*420000*2 = 0,244m$$
Sl,max=0,75*d*(1+ctgα)=0,75*0,345*1=0,2587m
Strzemiona Φ8 co 240mm.
V2*0,621=83,5kN
$$s \leq \frac{A_{\text{sw}}}{V_{\text{Ed}}}*z*f_{\text{ywd}}*ctg\theta = \frac{0,0001005}{83,5}*0,311*420000*2 = 0,314m$$
Sl,max=0,75*d*(1+ctgα)=0,75*0,345*1=0,2587m
Strzemiona Φ8 co 240mm. Jeden rozstaw.
$$\upsilon = 0,6*\left( 1 - \frac{f_{\text{ck}}}{350} \right) = 0,6*\left( 1 - \frac{30}{350} \right) = 0,55$$
$${V_{\text{Rd}}^{\max}}^{'} = \frac{b_{w}*z*\upsilon*f_{\text{cd}}}{ctg\theta + tg\theta} = \frac{0,2*0,311*0,55*21400}{2 + 0,5} = 291,84kN$$
SGU:
beff=1,488m;bw=0,2m;hf=0,14m;h=0,39m
$$g_{k}^{z} = \frac{10,66kN}{m}$$
$$q_{k}^{z} = \frac{16,4kN}{m}$$
$$q_{k}^{z}*\psi_{2} = 16,4*0,8 = \frac{13,12kN}{m}$$
Obwiednia momentów:
Mmax=57,089kNm; przęsło A
As1=9,42cm2;
u=beff,1+(h-hf)+bw+(h-hf)+ beff,2=0,599+0,25+0,25+0,25+0,599=1,948m
Ac=beff*hf+(h-hf)*bw=1,448*0,14+0,25*0,2=0,253m2
h0=2Ac/u=2*0,253/1,948=0,259m
φ(∞,t0) = 2, 2
$$E_{c,eff}^{} = \frac{E_{\text{cm}}^{}}{1 + \varphi\left( \infty,t_{0} \right)} = \frac{32}{1 + 2,2} = 10GPa$$
$$\propto_{e}^{} = \frac{E_{s}}{E_{c,eff}} = \frac{200}{10} = 20$$
Faza I – przekrój niezarysowany
Acs = Ac + αe • As = 0, 253 + 20 • 0, 000942 = 0, 272 m2;
Scs = (beff − bw)*hf * 0, 5 * hf + bw * h * 0, 5 * h + αe * As1 * d = (0,599−0,2) * 0, 14 * 0, 5 * 0, 14 + 0, 2 * 0, 39 * 0, 5 * 0, 39 + 20 * 0, 000942 * 0, 345 = 0, 0256m3
Środek ciężkości przekroju:
$$x_{I} = \frac{S_{\text{cs}}}{A_{\text{cs}}} = \frac{0,0256}{0,272} = 0,0942m$$
Moment bezwładności przekroju niezarysowanego:
$$I_{I} = \lbrack\frac{\left( b_{\text{eff}} - b_{w} \right) \bullet h_{f}^{3}}{12} + \left( b_{\text{eff}} - b_{w} \right) \bullet h_{f} \bullet \left( x_{I} - 0,5h_{f})^{2} \right\rbrack + \lbrack\frac{b_{w} \bullet x_{I}^{3}}{12} + b_{w} \bullet x_{I} \bullet \left( 0,5x_{I})^{2} \right\rbrack + \lbrack\frac{b_{w} \bullet (h - x_{I})^{3}}{12} + b_{w} \bullet \left( h - x_{I} \right) \bullet \left( \frac{h - x_{I}}{2})^{2} \right\rbrack + \lbrack\alpha_{e} \bullet A_{s1} \bullet \left( d - x_{I})^{2} \right\rbrack = = \lbrack\frac{\left( 1,448 - 0,2 \right) \bullet {0,14}^{3}}{12} + (1,448 - 0,2) \bullet 0,14 \bullet \left( 0,0942 - 0,5 \bullet 0,14)^{2} \right\rbrack + \lbrack\frac{0,2 \bullet {0,0942}^{3}}{12} + 0,2 \bullet 0,0942 \bullet \left( 0,5 \bullet {0,0942)}^{2} \right\rbrack + \left\lbrack \frac{0,2 \bullet (0,39 - {0,0942)}^{3}}{12} + 0,2 \bullet \left( 0,39 - 0,0942 \right) \bullet \left( \frac{0,39 - 0,0942}{2} \right)^{2} \right\rbrack + \lbrack 20 \bullet 0,000942 \bullet \left( 0,345 - 0,0942 \right)^{2} = 0,003354\ m^{4};$$
Wskaznik na zginanie:
$$W_{\text{cs}} = \frac{I_{I}}{h - x_{I}} = \frac{0,003354}{0,39 - 0,0942} = 0,0113m^{3}$$
Moment rysujacy:
Mcr = Wcs * fctm = 0, 0113 * 2900 = 32, 77kNm < 57, 09kNm
Belka jest zarysowana.
Ugięcie belki w fazie I
$$\propto_{I} = \propto *\frac{M_{eq,p}*l_{\text{eff}}^{2}}{E_{c,eff}^{}*I_{I}^{}} = \frac{1}{12}*\frac{57,09*5,175}{10000000*0,000942} = 0,0314 = 3,14mm$$
Faza II
1, 448 * xII * 0, 5 * xII − 0, 000942 * 20 * (0,345−xII) = 0
0, 724 * xII2 + 0, 01884xII2 − 0, 0065 = 0
xII = 0, 082m < hf P.T.
$$I_{\text{II}} = \left\lbrack \frac{b_{\text{eff}}*x_{\text{II}}^{3}}{12} + b_{\text{eff}}*x_{\text{II}}^{}*\left( 0,5*x_{\text{II}}^{} \right)^{2} \right\rbrack + A_{S1}* \propto_{e}*\left( d - x_{\text{II}}^{} \right)^{2} = \left\lbrack \frac{1,448*0,082}{12} + 1,448*0,082*\left( 0,5*0,082 \right)^{2} \right\rbrack + 0,000942*20*\left( 0,345 - 0,082 \right)^{2} = 0,00157m^{4}$$
Ugięcie belki w fazie II
$$a_{\text{II}} = a_{1}*\frac{0,003354}{0,00157} = 0,0314*2,136 = 6,71mm$$
Ugięcie żebra:
$$\zeta = 1 - 0,5*\left( \frac{M_{\text{cr}}}{M_{Eq,p}} \right)^{2} = 1 - 0,5*\left( \frac{32,77}{57,09} \right)^{2} = 0,835$$
a = aII * ζ + aI * (1−ζ) = 6, 71 * 0, 835 + 3, 14 * 0, 165 = 6, 12
$a_{\lim} = \frac{l_{\text{eff}}}{250} = \frac{5175}{250} = 20,7$ ok.
Szerokosc rysy:
$$A_{c,\text{eff}} = * \bullet \min\left\{ \begin{matrix}
2,5*\left( h - d \right) \\
\frac{h - x_{I}}{3} \\
\end{matrix} \right.\ = 25*\min\left\{ \begin{matrix}
2,5*\left( 39 - 34,5 \right) = 11,25 \\
\frac{39 - 9,42}{3} = 9,86 \\
\end{matrix} \right.\ = 25*9,86 = 246,5cm^{2}$$
$$\rho_{\text{eff}} = \frac{A_{S1}}{A_{c,eff}} = \frac{9,42}{246,5} = 0,038$$
$$S_{r,max} = k_{3}*c + k_{1}*k_{2}*k_{4}*\frac{\phi}{\rho_{\text{eff}}} = 3,4*30 + 0,8*0,5*0,425*\frac{20}{0,038} = 191,47mm$$
$$\sigma_{s} = \frac{\alpha_{e}*M_{eq,p}}{I_{\text{II}}}*\left( d - x_{\text{II}} \right) = \frac{20*57,09}{0,00157}*\left( 0,345 - 0,082 \right) = 191,3MPa$$
$$\varepsilon_{\text{sm}} - \varepsilon_{\text{cm}} = \frac{\sigma_{s} - k_{t}*\frac{f_{ct,eff}}{\rho_{\text{eff}}}*\left( 1 + \alpha_{e}*\rho_{\text{eff}} \right)}{E_{s}} = \frac{191,3 - 0,4*\frac{2,9}{0,038}*\left( 1 + 20*0,038 \right)}{200000} = 0,000688$$
wk = Sr, max * (εsm−εcm) = 191, 3MPa * 0, 000688 = 0, 1316mm < 0, 3mm ok.
2.4 Podciąg
2.4.1 Dane wyjściowe:
C30/37
- beton C30/37; fcd=21,4 MPa; fck=30 MPa; fctm=2,9 Mpa; fctk=2,0 Mpa; Ecm=32GPa
- stal fyd=420Mpa; fyk=500MPa
- Es=200GPa
- otulina XC3 cmin=25mm
- otulina REI90 a=40mm; asd=50mm
Wyszczególnienie | Obc. Char. | γf | Obc. obliczeniowe |
---|---|---|---|
>1 | =1 | ||
gk,ż*l2,ż=10,66*6,05 | 64,5 | ||
gd1,ż*l2,ż | |||
Podciąg(0,64-0,14)*0,25x6,05*25 | 18,9 | 1,35 | 1 |
Tynk 2*(0,64-0,39)*0,02*19*6,05 | 2,3 | 1,35 | 1 |
Suma | Gk=85,7 | ||
Obc. zmienne | Qk=99,22 | 1,5 | 1 |
2.4.3 Schemat statyczny
Zawsze Gd2;
Ewentualnie:
G = Gd1 − Gd2 = 115, 3 − 85, 7 = 29, 6kN
$$\overset{\overline{}}{Q} = Q_{d} + G = 148,83 + 29,6 = 178,43kN$$
2.4.4 obliczenia statyczne:
1. MEd, A − Bmax = 428, 95kNm
2. MEd, B − Cmax = 318, 94kNm
3. MEd, Bmin = −504, 45kNm
5. MEd, Cmin = −437, 43kNm
6. MEd, Bkrmin = −457, 08kNm
7. MEd, Ckrmin = −393, 72kNm
2.4.5 Wymiarowanie na moment:
Przeslo skrajne:
$$b_{1} = b_{2} = \frac{b_{}{- b}_{w}}{2} = \frac{5,85 - 0,25}{2} = 2,8mm$$
l0 = 0, 85 * l1 = 0, 85 * 5, 85 = 4973m
beff, i = 0, 2bi + 0, 1l0 ≤ {0, 2l0;b}
beff, 1 = 0, 2 * 2, 8 + 0, 1 * 4, 973 = 1, 057 > {0,995;2,775}
beff, 1 = beff, 2 = 0, 995
beff = 2 * beff, 1 + bw = 2, 24m
W przęśle środkowym:
$$b_{1} = b_{2} = \frac{b_{}{- b}_{w}}{2} = \frac{6,15 - 0,25}{2} = 2,95m$$
l0 = 0, 7 * l1 = 0, 7 * 6150 = 4305mm
beff, i = 0, 2bi + 0, 1l0 ≤ {0, 2l0;b}
beff, 1 = 0, 2 * 2, 95 + 0, 1 * 4, 305 = 1, 02 > {0,861;2,775}
beff, 1 = beff, 2 = 0, 861
beff = 2 * beff, 1 + bw = 1, 972m
Wysokośc użyteczna podciągu:
a=40mm;cnom=25mm;⌀strz = 8mm; ⌀ = 28mm
a1=cnom+Φstrz+Φ/2=25+8+14=47=50mm
d=hp- cnom-Φstrz-Φ-0,5* Φ =640-(25+8+25+12,5)=640-71=569mm
dkr=h-cnom-Φpl-Φż-Φp-0,5*25=640-25-8-20-28-14=545mm
doś=545+300/6=595mm
Sprawdzenie rzeczywistego kształtu rozkładu momentów w podciagu:
MF = beff * hf * fcd * (d−0,5hf)
Dla przęsła skrajnego:
MF = beff * hf * fcd * (d−0,5hf) = 2, 29m * 0, 14m * 21400kPa * (0,569−0,5*0,14) = 3568kNm > 428, 95kNm
Dla przęseł srodkowych:
MF = beff * hf * fcd * (d−0,5hf) = 2, 022m * 0, 14m * 21400kPa * (0,569−0,5*0,14) = 3150kNm > 318, 94kNm
Przekrój jest pozornie teowy.
1. MEd, A − Bmax = 428, 95kNm
xeff=0,016m
As1=18,2cm2
2. MEd, B − Cmax = 318, 94kNm
xeff=0,01344m
As1=13,5cm2
3. MEd, Bmin = −504, 45kNm
xeff=0,188m
As1=23,98cm2
4. MEd, Cmin = −437, 43kNm
xeff=0,159m
As1=20,19cm2
5. MEd, Bkrmin = −457, 08kNm
xeff=0,19m
As1=24,18cm2
6. MEd, Ckrmin = −393, 72kNm
xeff=0,158m
As1=20,11cm2
Minimalna powierzchnia zbrojenia na zginanie:
fctm=2,9Mpa
$$A_{s,min} = 0,26*\frac{f_{\text{ctm}}}{f_{\text{yk}}}*b*d \geq 0,0013b*d;$$
$$A_{s,min} = 0,26*\frac{2,9}{500}*0,25*0,545 \geq 0,0013*0,25*0,545$$
As, min = 2, 05cm2 ≥ 1, 8cm2;
Minimalna odległośc między prętami:
Max(Φ,20mm,dg+5mm)=max(28,20,21mm)=28mm
Zbrojenie górne6Φ25=29,45cm2;
Zbrojenie dolne5Φ25=24,54cm2;
Określenie nośności prętów oraz długości zakotwienia:
As1=29,45cm^2
$$x_{\text{eff}} = \frac{f_{\text{yd}}*A_{s1}}{f_{\text{cd}}*b} = \frac{420}{21,4}*\frac{29,45}{25} = 23,12cm$$
MRd = fyd * As1 * (d−0,5xeff) = 420 * 29, 45 * (59,5−0,5*231,12) = 592, 96
Dla 6Φ25 592,96kNm
Dla 5Φ25 513,94kNm
Dla 4Φ25 427,12kNm
Dla 3Φ25 332,25kNm
Dla 2Φ25 229,45kNm
Długośc zakotwienia prętów dolnych na podporze skrajnej
lbd = α1 * α2 * α3 * α4 * lb, rqd ≥ lb, min
$$l_{b,rqd} = \frac{\varnothing}{4}*\frac{\sigma_{\text{sd}}}{f_{\text{bd}}};$$
fbd = 2, 25 * η1 * η1 * fctd
η1 = 1, 0
η2 = 1, 0
fctd = 1, 4MPa
fbd = 2, 25 * η1 * η1 * fctd=2,25*1,0*1,0*1,4=3,15Mpa
⌀ = 25mm
$$\sigma_{\text{sd}} = f_{\text{yd}}*\frac{A_{s,req}}{A_{s,prov}} = 420*\frac{1}{9,82} = 42,8MPa$$
$$l_{b,rqd} = \frac{\varnothing}{4}*\frac{\sigma_{\text{sd}}}{f_{\text{bd}}} = \frac{25}{4}*\frac{42,8}{3,15} = 85mm$$
lb, min = max{0, 3lb, rqd;10ϕ;100mm} = 250mm
α1 − α5 = 1, 0
lbd = lb, min = 250mm
Długośc zakotwienia prętów dolnych w przęsłach
lbd = α1 * α2 * α3 * α4 * lb, rqd ≥ lb, min
$$l_{b,rqd} = \frac{\varnothing}{4}*\frac{\sigma_{\text{sd}}}{f_{\text{bd}}};$$
fbd = 2, 25 * η1 * η1 * fctd
η1 = 0, 7
η2 = 1, 0
fctd = 1, 4MPa
fbd = 2, 25 * η1 * η1 * fctd=2,25*1,0*1,0*1,4=2,21Mpa
⌀ = 25mm
$$\sigma_{\text{sd}} = f_{\text{yd}}*\frac{A_{s,req}}{A_{s,prov}} = 420*\frac{18,2}{24,54} = 311,5MPa$$
$$l_{b,rqd} = \frac{\varnothing}{4}*\frac{\sigma_{\text{sd}}}{f_{\text{bd}}} = \frac{25}{4}*\frac{311,5}{2,21} = 880mm$$
lb, min = max{0, 3lb, rqd;10ϕ;100mm} = 264mm
α1 − α5 = 1, 0
lbd = lb, min = 880mm
Długośc zakotwienia prętów górnych
lbd = α1 * α2 * α3 * α4 * lb, rqd ≥ lb, min
$$l_{b,rqd} = \frac{\varnothing}{4}*\frac{\sigma_{\text{sd}}}{f_{\text{bd}}};$$
fbd = 2, 25 * η1 * η1 * fctd
η1 = 0, 7
η2 = 1, 0
fctd = 1, 4MPa
fbd = 2, 25 * η1 * η1 * fctd=2,25*1,0*1,0*1,4=2,21Mpa
⌀ = 25mm
$$\sigma_{\text{sd}} = f_{\text{yd}}*\frac{A_{s,req}}{A_{s,prov}} = 420*\frac{24,18}{29,45} = 344,8MPa$$
$$l_{b,rqd} = \frac{\varnothing}{4}*\frac{\sigma_{\text{sd}}}{f_{\text{bd}}} = \frac{25}{4}*\frac{344,8}{2,21} = 975mm$$
lb, min = max{0, 3lb, rqd;10ϕ;100mm} = 292mm
α1 − α5 = 1, 0
lbd = lb, min = 980mm
Długośc zakotwienia prętów górnych na podporze skrajnej:
10⌀ = 250mm
Długośc zakotwienia pretow na podporami posrednimi dolem:
2*7*⌀ = 2 * 7 * 25 = 350mm
Ścinanie:
Podpora skrajna:
$$V_{Rd,C}^{} = \left\lbrack C_{Rd,c}*k*\left( 100*\varrho_{L}*f_{\text{ck}} \right)^{\frac{1}{3}} \right\rbrack*b_{c}*d$$
$$C_{Rd,c} = \frac{0,18}{\gamma_{C}} = \frac{0,18}{1,4} = 0,129$$
$$k = 1 + \sqrt{\frac{200}{d}} = 1 + \sqrt{\frac{200}{545}} = 1,61 < 2,0$$
$$\varrho_{L} = \frac{A_{\text{SL}}}{b*d} = \frac{24,54}{25*54,5} = 0,018$$
$$V_{Rd,C}^{} = \left\lbrack C_{Rd,c}*k*\left( 100*\varrho_{L}*f_{\text{ck}} \right)^{\frac{1}{3}} \right\rbrack*b_{c}*d = 0,129*1,61*\left( 100*0,018*30 \right)^{\frac{1}{3}}*250*545 = 107kN$$
υmin = 0, 035 * k1, 5 * fck0, 5 = 0, 035 * 1, 611, 5 * 300, 5 = 0, 392
υmin * bw * d = 0, 392 * 250 * 545 = 53, 36kN
Ok.
VEd = 228, 73kN
S=545+50mm=595mm
Z=0,9d=490mm
fywd=500Mpa
α = 45
$$cot\theta = \frac{595}{490} = 1,214$$
cotα = 1
sinα = 0, 707
$$V_{Rd,s2} = \frac{A_{\text{sw}}}{s}*z*f_{\text{ywd}}*\left( cot\theta + cot\alpha \right)*sin\alpha = \frac{4,91}{0,595}*0,49*\frac{500MPa}{1,15}*\left( 1,214 + 1 \right)*0,707 = 275kN$$
VEd − VRd, s2 = 228, 73 − 275 < 0 → VRd, s1 = 0, 5 * VEd = 115kN
$$s \leq \frac{A_{\text{sw}}}{V_{Rds1}}*z*f_{\text{ywd}}*ctg\theta = \frac{{2*0,004}^{2}*\pi}{115kN}*0,49m*420000kPa*2 = 0,35m$$
sl, max = 0, 75 * d * (1+ctgα) = 0, 41m
S=0,35m
VEd = 228, 73kN
Sbmax=0,6d*(1+ctgα)=0,6*545*(1+1)=654650mm
Z=0,9d=490mm
fywd=500Mpa
α = 45
$$cot\theta = \frac{650}{490} = 1,327$$
cotα = 1
sinα = 0, 707
$$V_{Rd,s2} = \frac{A_{\text{sw}}}{s}*z*f_{\text{ywd}}*\left( cot\theta + cot\alpha \right)*sin\alpha = \frac{4,91}{0,65}*0,49*\frac{500MPa}{1,15}*\left( 1,327 + 1 \right)*0,707 = 256kN$$
VEd − VRd, s2 = 228, 73 − 256 < 0 → VRd, s1 = 0, 5 * VEd = 115kN
$$s \leq \frac{A_{\text{sw}}}{V_{Rds1}}*z*f_{\text{ywd}}*ctg\theta = \frac{{2*0,004}^{2}*\pi}{115kN}*0,49m*420000kPa*2 = 0,35m$$
sl, max = 0, 75 * d * (1+ctgα) = 0, 41m
S=0,35m
VEd = 228, 73kN
Sbmax=0,6d*(1+ctgα)=0,6*545*(1+1)=654650mm
Z=0,9d=490mm
fywd=500Mpa
α = 45
$$cot\theta = \frac{650}{490} = 1,327$$
cotα = 1
sinα = 0, 707
$$V_{Rd,s2} = \frac{A_{\text{sw}}}{s}*z*f_{\text{ywd}}*\left( cot\theta + cot\alpha \right)*sin\alpha = \frac{4,91}{0,65}*0,49*\frac{500MPa}{1,15}*\left( 1,327 + 1 \right)*0,707 = 256kN$$
VEd − VRd, s2 = 228, 73 − 256 < 0 → VRd, s1 = 0, 5 * VEd = 115kN
$$s \leq \frac{A_{\text{sw}}}{V_{Rds1}}*z*f_{\text{ywd}}*ctg\theta = \frac{{2*0,004}^{2}*\pi}{115kN}*0,49m*420000kPa*2 = 0,35m$$
sl, max = 0, 75 * d * (1+ctgα) = 0, 41m
S=0,35m
Podpora środkowa:
VEd = 333, 84kN
S=545+50mm=595mm
Z=0,9d=490mm
fywd=500Mpa
α = 45
$$cot\theta = \frac{595}{490} = 1,214$$
cotα = 1
sinα = 0, 707
$$V_{Rd,s2} = \frac{A_{\text{sw}}}{s}*z*f_{\text{ywd}}*\left( cot\theta + cot\alpha \right)*sin\alpha = \frac{4,91}{0,595}*0,49*\frac{500MPa}{1,15}*\left( 1,214 + 1 \right)*0,707 = 275kN$$
VEd − VRd, s2 = 333, 84 − 275 = 58, 7 < 0, 5VEd → VRd, s1 = 0, 5 * VEd = 167kN
$$s \leq \frac{A_{\text{sw}}}{V_{Rds1}}*z*f_{\text{ywd}}*ctg\theta = \frac{{2*0,004}^{2}*\pi}{167kN}*0,49m*420000kPa*2 = 0,25m$$
sl, max = 0, 75 * d * (1+ctgα) = 0, 41m
S=0,25m
VEd = 333, 84kN
Sbmax=0,6d*(1+ctgα)=0,6*545*(1+1)=654650mm
Z=0,9d=490mm
fywd=500Mpa
α = 45
$$cot\theta = \frac{650}{490} = 1,327$$
cotα = 1
sinα = 0, 707
$$V_{Rd,s2} = \frac{A_{\text{sw}}}{s}*z*f_{\text{ywd}}*\left( cot\theta + cot\alpha \right)*sin\alpha = \frac{4,91}{0,65}*0,49*\frac{500MPa}{1,15}*\left( 1,327 + 1 \right)*0,707 = 256kN$$
VEd − VRd, s2 = 333, 84 − 256 = 77, 84 < 0, 5 * VEd → VRd, s1 = 0, 5 * VEd = 167kN
$$s \leq \frac{A_{\text{sw}}}{V_{Rds1}}*z*f_{\text{ywd}}*ctg\theta = \frac{{2*0,004}^{2}*\pi}{167kN}*0,49m*420000kPa*2 = 0,35m$$
sl, max = 0, 75 * d * (1+ctgα) = 0, 41m
S=0,35m
VEd = 333, 84kN
Sbmax=0,6d*(1+ctgα)=0,6*545*(1+1)=654650mm
Z=0,9d=490mm
fywd=500Mpa
α = 45
$$cot\theta = \frac{650}{490} = 1,327$$
cotα = 1
sinα = 0, 707
$$V_{Rd,s2} = \frac{A_{\text{sw}}}{s}*z*f_{\text{ywd}}*\left( cot\theta + cot\alpha \right)*sin\alpha = \frac{4,91}{0,65}*0,49*\frac{500MPa}{1,15}*\left( 1,327 + 1 \right)*0,707 = 256kN$$
VEd − VRd, s2 = 333, 84 − 256 = 77, 84 < 0, 5 * VEd → VRd, s1 = 0, 5 * VEd = 167kN
$$s \leq \frac{A_{\text{sw}}}{V_{Rds1}}*z*f_{\text{ywd}}*ctg\theta = \frac{{2*0,004}^{2}*\pi}{167kN}*0,49m*420000kPa*2 = 0,35m$$
sl, max = 0, 75 * d * (1+ctgα) = 0, 41m
S=0,35m
Koniec ścinania.
Rysunek.
2.4 Słup
2.4.1 Dane wyjściowe:
- beton C30/37; fcd=21,4 MPa; fck=30 MPa; fctm=2,9 Mpa; fctk=2,0 Mpa; Ecm=32GPa
- stal fyd=420Mpa; fyk=500MPa
- Es=200GPa
- otulina XC3 cmin=25mm
- otulina REI90 a=40mm; asd=50mm
2.4.2 Zestawienie obciążeń:
- stałe ze stropodachu N1=158kN
- śnieg N2=24,1kN
- obciążenie ze stropów N3=1931kN
- ciężar żeber N4=88,1kN
- ciężar tynku na żebrach N5=13,38kN
- ciężar podciągu N6 = [(hp−hf)*bp*l2p*25] * 1, 35 * 1 * 3 = [(0,64−0,14)*0,3*6,15*25] * 1, 35 * 1 * 3 = 93, 4kN
- ciężar tynku na podciągu N7 = [2*(hp−hf)*0,02*l2p*19] * 1, 35 * 1 * 3 = [(0,64−0,14)*0,02*6,15*25] * 1, 35 * 1 * 3 = 1, 42kN
- ciężar słupa N8 = [(h−hp)*b*h*25] * 1, 35 * 3 = [(4−0,64)*0,3*0,3*25] * 1, 35 * 1 * 3 = 30, 62kN
NEd=2340kN
MEd=0
2.4.3 Schemat statyczny:
$$I = \frac{bh^{3}}{12} = \frac{30^{4}}{12} = 67500cm^{4}$$
$$i = \sqrt{\frac{I}{A}} = \sqrt{\frac{67500}{900}} = 8,67cm$$
l0 = 0, 7 * 422 = 295, 4cm
$$\lambda = \frac{l_{0}}{i} = \frac{295,4}{8,67} = 34,07$$
$$\lambda_{\lim} = \frac{20*A*B*C}{\sqrt{n}} =$$
$$A = \frac{1}{1 + 0,2\varphi_{\text{ef}}} = 0,7$$
$$B = \sqrt{1 + 2\omega}$$
$$\omega = \frac{A_{S}*f_{\text{yd}}}{Ac*f_{\text{cd}}}$$
$$\varrho = \frac{A_{s}}{b*h} = > A_{s} = 0,02*b*h = 0,02*30*30 = 18cm^{2}$$
$$\omega = \frac{A_{S}*f_{\text{yd}}}{Ac*f_{\text{cd}}} = \frac{18*420}{900*21,4} = 0,393$$
$$B = \sqrt{1 + 2\omega} = \sqrt{1 + 2*0,393} = 1,34$$
C = 1, 7 − rm
$$r_{m} = \frac{M_{01}}{M_{02}} = 0$$
C = 0, 7
$$n = \frac{N_{\text{Ed}}}{A_{c}*f_{d}} = \frac{2340kN}{0,09m\hat{}2*21400kPa} = 1,215$$
$$\lambda_{\lim} = \frac{20*A*B*C}{\sqrt{n}} = \frac{20*0,7*1,34*0,7}{\sqrt{1,215}} = 11,91$$
λ > λlim
Należy uwzględnic wpływ efektów 2 rzędu.
2.4.5 Mimośród I rzędu:
$$e_{0} = \left( \frac{M_{\text{Ed}}^{1}}{N_{\text{Ed}}^{1}} + e_{1} \right) \geq max\left\{ 20mm;\frac{h}{30} \right\}$$
$$e_{0} = \left( \frac{M_{\text{Ed}}^{1}}{N_{\text{Ed}}^{1}} + e_{1} \right) = \left( 0 + \frac{l_{0}}{400} \right) = \left( 0 + \frac{2954}{400} \right) = 7,385 \geq max\left\{ 20mm;\frac{300}{30} = 10mm \right\}$$
e0 = 20mm
M0, Ed = NEd * e0 = 2340 * 0, 02 = 46, 8kNm
2.4.6 Wyznaczenie siły krytycznej
$$N_{B} = \frac{9,6*E_{\text{cd}},eff*I_{I}}{l_{0}^{2}}$$
u=2*b+2*h=4*0,3=1,2m
Ac=b2=0,09m2
h0=2Ac/u=2*0,09/1,2=0,18m
φ(∞,t0) = 2, 6
$$E_{c,eff}^{} = \frac{E_{\text{cm}}^{}}{1 + \varphi\left( \infty,t_{0} \right)} = \frac{32}{1 + 2,6} = 8,89GPa$$
$$\propto_{e}^{} = \frac{E_{s}}{E_{c,eff}} = \frac{200}{8,89} = 22,5$$
$$E_{cd,eff}^{} = \frac{E_{c,eff}^{}}{1,2} = \frac{8,89GPa}{1,2} = 7408kPa$$
$$A_{s} = 0,02*0,3*0,3 = 0,0018m\hat{}2$$
$$I_{I} = \frac{bh\hat{}3}{12} + \alpha_{e}*A_{s}*\left( \frac{h}{2} - a \right)^{2} = \frac{{0,3}^{4}}{12} + 22,5*0,0018*\left( \frac{0,3}{2} - 0,045 \right)^{2} = 0,001122m^{4}$$
$$N_{B} = \frac{9,6*E_{\text{cd}},eff*I_{I}}{l_{0}^{2}} = \frac{9,6*7408kPa*0,001122m^{4}}{(2,954{m)}^{2}} = 9,14kN$$
Moment II rzędu:
$$M_{\text{Ed}} = M_{0Ed}*\left( 1 + \frac{\beta}{\frac{N_{B}}{N_{\text{Ed}}} - 1} \right) = 46,8*\left( 1 + \frac{\frac{\pi}{c_{0}}}{\frac{9,14}{2340} - 1} \right) = 31,43kNm$$
$$e_{\text{II}} = \frac{M_{\text{Ed}}^{\text{II}}}{N_{\text{Ed}}} = \frac{31,43}{2340} = 0,0134m$$
2.4.8 Wymiarowanie zbrojenia z wykorzystaniem nomogramów:
$$\frac{M_{\text{Ed}}^{\text{II}}}{b*h^{2}*f_{\text{ck}}} = 0,0388$$
$$\frac{N_{\text{Ed}}^{}}{b*h^{}*f_{\text{ck}}} = 0,867$$
Zbrojenie:
$$A_{s} = \zeta*b*h*\frac{f_{\text{ck}}}{f_{\text{yk}}} = 0,7*0,3*0,3*\frac{30}{500} = 0,00378cm^{2}$$
As1 = As2 = 18, 9cm2
$$\varrho_{\text{prov}} = \frac{A_{s,prov}}{b*d} = \frac{19,63}{30*30} = 0,0218$$
$${\Delta\varrho}_{} = \frac{\left| \varrho_{}{- \varrho}_{\text{prov}} \right|}{\varrho_{}} = \frac{\left| 0,02 - 0,0218 \right|}{0,02} = 0,9\ \ ok.$$
Długośc zakotwienia prętów:
lbd = α1 * α2 * α3 * α4 * lb, rqd ≥ lb, min
$$l_{b,rqd} = \frac{\varnothing}{4}*\frac{\sigma_{\text{sd}}}{f_{\text{bd}}};$$
fbd = 2, 25 * η1 * η1 * fctd
η1 = 0, 7
η2 = 1, 0
fctd = 1, 4MPa
fbd = 2, 25 * η1 * η1 * fctd=2,25*1,0*1,0*1,4=2,21Mpa
⌀ = 25mm
$$\sigma_{\text{sd}} = f_{\text{yd}}*\frac{A_{s,req}}{A_{s,prov}} = 420*\frac{18,9}{19,63} = 404,4MPa$$
$$l_{b,rqd} = \frac{\varnothing}{4}*\frac{\sigma_{\text{sd}}}{f_{\text{bd}}} = \frac{25}{4}*\frac{344,8}{2,21} = 1142mm$$
lb, min = max{0, 3lb, rqd;10ϕ;100mm} = 342mm
α1 − α5 = 1, 0
lbd = lb, min = 1142mm
Rozmieszczenie prętów:
e=20mm<0,15b=0,15*300=45mm
Metoda A.
l0, fi = 0, 7 * 4, 22 = 2, 954m ≤ 3m
REI90a=45mm
2.5 Stopa
2.5.1 Dane wyjściowe:
- beton C30/37; fcd=21,4 MPa; fck=30 MPa; fctm=2,9 Mpa; fctk=2,0 Mpa; Ecm=32GPa
- stal fyd=420Mpa; fyk=500MPa
- Es=200GPa
- otulina XC3 cmin=25mm
- otulina REI90 a=40mm; asd=50mm
$$\sigma = \frac{N_{\text{Ed}}}{B*L} = \frac{2340}{{2,9}^{2}} = 278,2kPa \leq \sigma_{\lim} = 300kPa$$
Wymiarowanie ze względu na zginanie:
a=1,3m
b=0,3m
$$x_{0} = \frac{\left( a*b*0,5*a \right) + \left( a*a*\frac{2}{3}*a \right)}{\left( a*b \right) + \left( a*a \right)} = \frac{\left( 1,3*0,3*0,5*1,3 \right) + \left( 1,3*1,3*\frac{2}{3}*1,3 \right)}{\left( 1,3*0,3 \right) + \left( 1,3*1,3 \right)} = 0,826m$$
$$g_{r} = \frac{N_{\text{Ed}}}{B*L} = \frac{2340}{2,9*2,9} = 278,24kPa$$
$$N_{r} = g_{r}*A = \frac{278kN}{m}*\frac{\left( 2,9m + 0,3m \right)*0,826m}{2} = 278*1,32 = 367,4kN$$
M∝ = Nr * x0 = 367kN * 0, 826m = 303, 5kNm
$$\sum_{}^{}{M_{As1} = f_{\text{cd}}*b*x_{\text{eff}}*\left( d - 0,5x_{\text{eff}} \right) - M_{\text{Ed}} = 0}$$
xeff = 1, 43cm
$$\sum_{}^{}{X = f_{\text{cd}}*b*x_{\text{eff}} - f_{\text{yd}}*A_{s1} = 0}$$
As1 = 21, 08cm2
Minimalna powierzchnia zbrojenia na zginanie:
fctm=2,9Mpa
$$A_{s,min} = 0,26*\frac{f_{\text{ctm}}}{f_{\text{yk}}}*b*d \geq 0,0013b*d;$$
$$A_{s,min} = 0,26*\frac{2,9}{500}*2,9*0,35 \geq 0,0013*2,9*0,35$$
As, min = 1, 53cm2 ≥ 1, 32cm2;
Minimalna odległośc między prętami:
Max(Φ,20mm,dg+5mm)=max(12,20,21mm)=21mm
Przyjęto 19Φ1221,48cm2
Sprawdzenie stopy na przebicie:
Jest konieczne projektowanie zbrojenia na przebicie.