Politechnika Wrocławska Wrocław, 23.05.2009 r.
Wydział Geoinżynierii,
Górnictwa i Geologii
Studia dzienne magisterskie
Rok IV Sem VIII
Wykonał: Prowadzący:
Andrzej Makieła dr inż. H. Wojtkiewicz
nr 141755
Dane dotyczące koparki kołowej: KWK-1500 |
---|
Lp. |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
β = arcsin [(hr – y)/K]
0.5D < hr < hrg
$$P_{u} = e + \sqrt{K^{2} - \left( h_{r} - y \right)^{2}}$$
Tabela nr 1.
hr [m] | Pu [m] | B [°] |
---|---|---|
5,2 | 36,89 | -4,46 |
10,4 | 36,92 | 3,82 |
15,6 | 36,19 | 12,19 |
20,8 | 34,65 | 20,83 |
22 | 34,17 | 22,89 |
Obliczanie maksymalnego promienia urabiania:
Pmax = K + e Pmax = 36 + 1 = 37 [m]
Pg = 34, 17 [m] Pd = 36, 89 [m]
$\phi_{\text{gr}} = \frac{\pi}{2} - H_{l,p}$ ϕgr = 40
Igr = Pd • sinϕgr Igr = 23, 71 [m]
Igrt = E • (Igr) + 1 Igrt = 24 [m]
$\alpha_{\text{bgr}} = arctg\frac{h_{r} - 0,5 \bullet D}{P_{g} - I_{\text{gr}}}$ $\alpha_{\text{bgr}}^{t} = arctg\frac{h_{r} - 0,5 \bullet D}{P_{g} - I_{\text{gr}}^{t}}\backslash n$
Tabela nr 2.
hr [m] | abgr [°] | a'bgr [°] |
---|---|---|
5,2 | 0,0 | 0,0 |
10,4 | 26,45 | 27,09 |
15,6 | 44,85 | 45,65 |
20,8 | 56,17 | 56,91 |
22 | 58,11 | 58,82 |
0, 5D ≤ hr ≤ hrg $\alpha_{\text{gr}} \leq \alpha_{b} \leq \frac{\pi}{2}$ Imax = Pg − (hr−0,5•D) • ctgαb
Tabela nr 3.
I max [m] | |
---|---|
hr | ab [20] |
20 | |
5,2 | 34,17 |
10,4 | 19,88 |
15,6 | 5,59 |
20,8 | -8,69 |
22 | -11,99 |
Tabela nr 3. c.d.
I max [m] |
---|
ab [55] |
55 |
34,17 |
30,53 |
26,88 |
23,24 |
22,40 |
$\alpha_{\text{bmin}} = arctg\frac{h_{r} - 0,5D}{P_{u} - l}$ lgr ≤ l ≤ lmax
Tabela nr 4
ab min | |
---|---|
hr | l |
23,71 | |
5,2 | 0 |
10,4 | 21,37 |
15,6 | 38,05 |
20,8 | 49,58 |
22 | 51,66 |
Bzd = Pd • sinϕzd
Tabela nr 5
φzd | Bzd |
---|---|
-30 | -18,45 |
-25 | -15,59 |
-20 | -12,62 |
-15 | -9,55 |
-10 | -6,41 |
-5 | -3,22 |
0 | 0,00 |
5 | 3,22 |
10 | 6,41 |
15 | 9,55 |
20 | 12,62 |
25 | 15,59 |
30 | 18,45 |
$\alpha_{\text{bgr}}^{t} \leq \alpha_{b} \leq \frac{\pi}{2}$ Bzg = Bzd − hrg • ctgαb
Tabela nr 6
Bzg | ||
---|---|---|
hr |
ab | ab |
40 | 50 | |
5,2 | -24,64 | -22,81 |
-18,81 | -16,98 | |
-12,60 | -10,77 | |
-6,20 | -4,36 | |
0,21 | 2,04 | |
6,42 | 8,25 | |
12,25 | 14,08 | |
10,4 | -30,84 | -27,17 |
-25,01 | -21,34 | |
-18,80 | -15,13 | |
-12,39 | -8,73 | |
-5,99 | -2,32 | |
0,22 | 3,89 | |
6,05 | 9,72 | |
15,6 | -37,04 | -31,54 |
-31,21 | -25,71 | |
-25,00 | -19,50 | |
-18,59 | -13,09 | |
-12,19 | -6,68 | |
-5,97 | -0,47 | |
-0,15 | 5,36 | |
20,8 | -43,23 | -35,90 |
-37,41 | -30,07 | |
-31,19 | -23,86 | |
-24,79 | -17,45 | |
-18,38 | -11,05 | |
-12,17 | -4,84 | |
-6,34 | 0,99 | |
22 | -44,66 | -36,91 |
-38,84 | -31,08 | |
-32,62 | -24,87 | |
-26,22 | -18,46 | |
-19,81 | -12,05 | |
-13,60 | -5,84 | |
-7,77 | -0,01 |
$\alpha_{\text{bgr}} \leq \alpha_{b} \leq \frac{\pi}{2}$ B = Pg + Bzd − hrg • ctgαb
Tabela nr 7
B | ||
---|---|---|
ab | ab | |
hr | 40 | 50 |
5,2 | 9,52 | 11,36 |
15,35 | 17,19 | |
21,56 | 23,40 | |
27,97 | 29,80 | |
34,38 | 36,21 | |
40,59 | 42,42 | |
46,41 | 48,25 | |
10,4 | 3,33 | 6,99 |
9,15 | 12,82 | |
15,37 | 19,03 | |
21,77 | 25,44 | |
28,18 | 31,85 | |
34,39 | 38,06 | |
40,22 | 43,89 | |
15,6 | -2,87 | 2,63 |
2,96 | 8,46 | |
9,17 | 14,67 | |
15,57 | 21,08 | |
21,98 | 27,48 | |
28,19 | 33,69 | |
34,02 | 39,52 | |
20,8 | -9,07 | -1,73 |
-3,24 | 4,10 | |
2,97 | 10,31 | |
9,38 | 16,71 | |
15,78 | 23,12 | |
22,00 | 29,33 | |
27,82 | 35,16 | |
22 | -10,50 | -2,74 |
-4,67 | 3,09 | |
1,54 | 9,30 | |
7,95 | 15,71 | |
14,35 | 22,11 | |
20,57 | 28,32 | |
26,39 | 34,15 |
B = Pg + Bzd − Hmax Hmax = hr + 0, 2D
Tabela nr 8
abgrt | 0,00 | 27,09 | 45,65 | 56,91 | 58,82 |
---|---|---|---|---|---|
Hmax | 7,28 | 12,48 | 17,68 | 22,88 | 24,08 |
hr | 5,2 | 10,4 | 15,6 | 20,8 | 22 |
y zd | B | ||||
-30 | - | -8,68 | -1,56 | 0,81 | 1,15 |
-25 | - | -5,82 | 1,29 | 3,66 | 4,00 |
-20 | - | -2,85 | 4,27 | 6,64 | 6,98 |
-15 | - | 0,22 | 7,34 | 9,71 | 10,05 |
-10 | - | 3,36 | 10,48 | 12,85 | 13,19 |
-5 | - | 6,55 | 13,67 | 16,04 | 16,38 |
0 | - | 9,77 | 16,88 | 19,26 | 19,59 |
5 | - | 12,98 | 20,10 | 22,47 | 22,81 |
10 | - | 16,17 | 23,29 | 25,66 | 26,00 |
15 | - | 19,32 | 26,43 | 28,80 | 29,14 |
20 | - | 22,38 | 29,50 | 31,87 | 32,21 |
25 | - | 25,36 | 32,47 | 34,85 | 35,19 |
30 | - | 28,21 | 35,33 | 37,70 | 38,04 |
$\alpha_{\text{cgr}} = arctg\left( \frac{h_{\text{rg}} - 0,5D}{P_{g} - \left( F + f \right)} \right)$ $f = f^{'} + f"$ $f^{'} = P_{p} - \sqrt{P_{p}^{2} - E^{2}}$
$f" = 0,2\ \div 2\ m$ w zależności od wielkości koparki (przyjęto współczynnik f”=2)
Tabela nr 9
hr | acrg |
---|---|
5,2 | 0 |
10,4 | 14,05 |
15,6 | 26,58 |
20,8 | 36,89 |
22 | 38,95 |
$$Z_{1} = P_{g} - \left( F + f \right) - \frac{h_{r} - 0,5D}{\text{tg}\alpha_{c}}$$
Tabela nr 10
hr | ac | ac | ac | ac | ac | ac |
---|---|---|---|---|---|---|
40 | 50 | 60 | 70 | 80 | 90 | |
5,20 | 20,79 | 20,79 | 20,79 | 20,79 | 20,79 | 20,79 |
10,40 | 14,59 | 16,42 | 17,78 | 18,89 | 19,87 | 20,79 |
15,60 | 8,39 | 12,06 | 14,78 | 17,00 | 18,95 | 20,79 |
20,80 | 2,19 | 7,70 | 11,78 | 15,11 | 18,03 | 20,79 |
22,00 | 0,76 | 6,69 | 11,09 | 14,67 | 17,82 | 20,79 |
$Z_{2} = \frac{0,5D \bullet cos\beta - \left( d + t \right)}{\text{sinβ}} - h_{\text{rg}} \bullet ctg\alpha_{c} + \sqrt{h_{\text{II}}\left( D - h_{\text{II}} \right)}$ przyjęto t = 0,4
Tabela nr 11
B
|
hr
|
ac | ac | ac | ac | ac | ac |
---|---|---|---|---|---|---|---|
40 | 50 | 60 | 70 | 80 | 90 | ||
-4,46084 | 5,20 | -49,65173 | -47,8179 | -46,4568 | -45,3473 | -44,3715 | -43,4546 |
3,822554 | 10,40 | 49,63224 | 53,29984 | 56,02203 | 58,24118 | 60,19267 | 62,02647 |
12,18747 | 15,60 | 4,053499 | 9,554901 | 13,63819 | 16,96692 | 19,89415 | 22,64486 |
20,8275 | 20,80 | -9,856643 | -2,52144 | 2,922946 | 7,361251 | 11,26423 | 14,93183 |
22,88538 | 22,00 | -12,29969 | -4,5413 | 1,217186 | 5,911547 | 10,0397 | 13,91889 |
Qo = 60 • q • nw $Q_{o} = 60 \bullet 1,4 \bullet 65 = 5460\ \lbrack\frac{m^{3}}{h}\rbrack$
gdzie: q – pojemność czerpaka [m3]
nw – liczba wysypów na minutę [1/min]
$Q_{t} = Q_{o}\frac{k_{w}}{k_{r}}$ $Q_{t} = 5460 \bullet \frac{1}{1,35} = 4044,44\ \lbrack\frac{m^{3}}{h}\rbrack$
gdzie: kw – współczynnik wypełnienia czerpaka
kr – współczynnik rozluźnienia
Klasa urabialności: IV
kw = 1,0 kr = 1,35
Qe = Qt • βs, m $Q_{e} = 4044,44 \bullet 0,9 = 3640\ \lbrack\frac{m^{3}}{h}\rbrack$
βs, m = βs + βm + βr, h βs, m = 0, 9
gdzie: βs – współczynnik sierpowatości urabianych pasm,
βm – współczynnik ruchów manewrowych niezbędny do procesów koparki,
βr,h – współczynnik rozruchu i hamowani w końcowych strefach urabianych
Qr = Qe • βk • βl $Q_{r} = 3640 \bullet 0,95 \bullet 0,95 = 3285,10\ \lbrack\frac{m^{3}}{h}\rbrack$
Βk = 0,95 βl = 0,95
gdzie: βk – współczynnik uwzględniający straty wydajności na końcówkach frontu eksploatacyjnego skutkiem zmiennych parametrów geometrycznych urabianej zabierki,
βl – współczynnik strat losowych (kamienie, bryły)
Qr, kl = Qr • βkl $Q_{r,kl} = 3285,10 \bullet 0,6 = 1985\ \lbrack\frac{m^{3}}{h}\rbrack$
$\beta_{\text{kl}} = \frac{Q_{\text{kl}}}{Q_{t}}$ $\beta_{\text{kl}} = \frac{2444}{4044} = 0,6$
gdzie: Qr,kl – wydajność możliwa do uzyskania przy danej wartości jednostkowych oporów kopania klśr i dynamice procesu kopania dk
Współczynnik Klsk:
$$k_{\text{lsk}} = \frac{122,4\left\lbrack N_{0} \bullet n_{m} - \gamma_{0} \bullet Q_{t} \bullet \left( \frac{0,9 \bullet D - 0,5 \bullet h_{r}}{3,6 \bullet 102} \right) \right\rbrack}{\sqrt{\frac{Q_{t} \bullet D \bullet n_{w}}{30 \bullet \left( 1 - cos\varphi_{u} \right)}} \bullet \left\lbrack \varphi_{u} + \left( 0,955 \bullet \varphi_{u} - 0,425 \right) + 0,7 \bullet D \bullet n_{w} \bullet r \bullet \left( 0,955 \bullet \varphi_{u} - 0,425 \right) \right\rbrack}$$
gdzie: Qt – wydajność techniczna [m3/h]
N0 – moc nominalna napędu koła czerpakowego [kW]
nm – sprawność całkowita napędu
nw – liczba wysypów
r – promień zaokrąglenia między krawędziami skrawającymi czerpaka [m]
D – średnica koła czerpakowego
Φu – kąt urabiania [°]
$\varphi_{u} = arccos\left( 1 - \frac{2 \bullet h_{r}}{D} \right)$ $\psi_{u} = \frac{\pi}{2} + arcsin\left( \frac{h_{r} - 0,5D}{0,5D} \right)$
Qt | 4044,44
|
3844,44
|
3644,44
|
3444,44
|
3244,44
|
3044,44
|
2844,44
|
|
---|---|---|---|---|---|---|---|---|
hr | fi u | |||||||
3,12 | 66,42 | 51,12 | 53,52 | 56,07 | 58,77 | 61,66 | 64,77 | 68,11 |
5,2 | 90 | 43,77 | 45,77 | 47,89 | 50,14 | 52,54 | 55,10 | 57,86 |
7,28 | 113,58 | 38,25 | 39,97 | 41,78 | 43,70 | 45,75 | 47,93 | 50,27 |
2644,44
|
2444,44
|
2244,44
|
2044,44
|
1844,44
|
1644,44
|
1444,44
|
1244,44
|
1044,44
|
---|---|---|---|---|---|---|---|---|
71,74 | 75,71 | 80,08 | 84,92 | 90,37 | 96,56 | 103,72 | 112,18 | 122,45 |
60,84 | 64,08 | 67,63 | 71,55 | 75,93 | 80,88 | 86,56 | 93,20 | 101,18 |
52,79 | 55,52 | 58,51 | 61,79 | 65,44 | 69,55 | 74,24 | 79,69 | 86,18 |
844,44
|
644,44
|
444,44
|
244,44
|
44,44
|
---|---|---|---|---|
135,38 | 152,61 | 177,71 | 221,32 | 357,25 |
111,09 | 124,07 | 142,51 | 173,29 | 260,07 |
94,16 | 104,49 | 118,91 | 142,35 | 204,42 |
Qt | 4666,667 | 4644,44 | 4444,44 | 4244,44 | 4044,44 | 3844,44 | 3644,44 | 3444,44 | |
---|---|---|---|---|---|---|---|---|---|
nw= | 75 | 35,12 | 35,29 | 36,87 | 38,53 | 40,27 | 42,10 | 44,04 | 46,09 |
nw= | 65 | - | - | - | - | 43,77 | 45,77 | 47,89 | 50,14 |
nw= | 55 | - | - | - | - | - | - | - | - |
3422,22 | 3244,44 | 3044,44 | 2844,44 | 2644,44 | 2444,44 | 2244,44 | 2044,44 | 1844,44 | 1644,44 |
---|---|---|---|---|---|---|---|---|---|
46,33 | 48,28 | 50,62 | 53,13 | 55,85 | 58,79 | 62,02 | 65,58 | 69,55 | 74,03 |
50,40 | 52,54 | 55,10 | 57,86 | 60,84 | 64,08 | 67,63 | 71,55 | 75,93 | 80,88 |
55,56 | 57,93 | 60,78 | 63,85 | 67,17 | 70,78 | 74,74 | 79,13 | 84,03 | 89,58 |
1444,44 | 1244,44 | 1044,44 | 844,44 | 644,44 | 444,44 | 244,44 | 44,44 |
---|---|---|---|---|---|---|---|
79,16 | 85,15 | 92,32 | 101,21 | 112,79 | 129,17 | 156,26 | 231,05 |
86,56 | 93,20 | 101,18 | 111,09 | 124,07 | 142,51 | 173,29 | 260,07 |
95,96 | 103,45 | 112,46 | 123,70 | 138,47 | 159,60 | 195,23 | 298,16 |
αb = 56 αc = 44 ψzd = 30 hr = 5, 2 m h0 = 0 m
Stopień 0 $P_{0} = \sqrt{K^{2} - \left( h_{0} - y \right)^{2}} + e = \sqrt{36^{2} - \left( 0 - 8 \right)^{2}} + 1 = 36,10\ m$
Stopień 1 P1 = Pu1 + 0, 5D = 36, 89 + 0, 5 • 10, 4 = 42, 09 m
Stopień 2 P2 = Pu2 + 0, 5D = 36, 92 + 0, 5 • 10, 4 = 42, 12 m
Stopień 3 P3 = Pu3 + 0, 5D = 44, 85 + 0, 5 • 10, 4 = 41, 39 m
Stopień 4 P4 = Pu4 + 0, 5D = 34, 65 + 0, 5 • 10, 4 = 39, 85 m
Bzd = P0 • sinψzd = 36, 10 • sin30 = 18, 05 m
Stopień 0 ψzd0 = 30
Stopień 1 $\psi_{zd1} = \frac{B_{\text{zd}} - h_{r} \bullet ctg\alpha_{b}}{P_{1}} = \frac{18,05 - 5,2 \bullet ctg56}{42,09} = 20$
Stopień 2 $\psi_{zd2} = \frac{B_{\text{zd}} - 2 \bullet h_{r} \bullet ctg\alpha_{b}}{P_{2}} = \frac{18,05 - 2 \bullet 5,2 \bullet ctg56}{42,12} = 15$
Stopień 3 $\psi_{zd3} = \frac{B_{\text{zd}} - 3 \bullet h_{r} \bullet ctg\alpha_{b}}{P_{3}} = \frac{18,05 - 3 \bullet 5,2 \bullet ctg56}{41,39} = 10$
Stopień 4 $\psi_{zd4} = \frac{B_{\text{zd}} - 4 \bullet h_{r} \bullet ctg\alpha_{b}}{P_{4}} = \frac{18,05 - 4 \bullet 5,2 \bullet ctg56}{39,85} = 5$
Stopień 0 $\psi_{wg0} = arcsin\frac{P_{1} - 4 \bullet h_{r}}{P_{4} \bullet tg\alpha_{c}} = arcsin\frac{42,09 - 4 \bullet 5,2}{39,85 \bullet tg44} = 33$
Stopień 1 $\psi_{wg1} = arcsin\frac{P_{1} - 3 \bullet h_{r}}{P_{3} \bullet tg\alpha_{c}} = arcsin\frac{42,09 - 3 \bullet 5,2}{41,39 \bullet tg44} = 41$
Stopień 2 $\psi_{wg2} = arcsin\frac{P_{1} - 4 \bullet h_{r}}{P_{2} \bullet tg\alpha_{c}} = arcsin\frac{42,09 - 4 \bullet 5,2}{42,12 \bullet tg44} = 51$
Stopień 3 $\psi_{wg3} = arcsin\frac{P_{1} - 4 \bullet h_{r}}{P_{1} \bullet tg\alpha_{c}} = arcsin\frac{42,09 - 4 \bullet 5,2}{42,09 \bullet tg44} = 65$
Stopień 4 ψwg4 = 90
αb = 56 αc = 80 ψzd = 20 hr = 5, 2 m
Bzd = P0 • sinψz0 = 36, 10 • sin20 = 12, 35 m
Stopień 0 ψzwd0 = 90 − χ = 90 − 70 = 20
Stopień 1 $\psi_{zwd1} = \frac{\mathbf{B}_{\text{zd}} + h_{r} \bullet ctg\alpha_{b}}{P_{1}} = \frac{12,35 + 5,2 \bullet ctg56}{42,09} = 24$
Stopień 2 $\psi_{zwd2} = \frac{\mathbf{B}_{\text{zd}} + 2 \bullet h_{r} \bullet ctg\alpha_{b}}{P_{2}} = \frac{12,35 + 2 \bullet 5,2 \bullet ctg56}{42,12} = 29$
Stopień 3 $\psi_{zwd3} = \frac{\mathbf{B}_{\text{zd}} + 3 \bullet h_{r} \bullet ctg\alpha_{b}}{P_{3}} = \frac{12,35 + 3 \bullet 5,2 \bullet ctg56}{41,39} = 33$
Stopień 4 $\psi_{zwd4} = \frac{\mathbf{B}_{\text{zd}} + 4 \bullet h_{r} \bullet ctg\alpha_{b}}{P_{4}} = \frac{12,35 + 4 \bullet 5,2 \bullet ctg56}{39,85} = 38$
Stopień 0-1 c0 − 1 = P1 − 0, 5D − P0 + hr • ctgαb = 42, 09 − 0, 5 • 10, 4 + 5, 2 • ctg56 = 4, 3 m
Stopień 1-2 c1 − 2 = P2 − 0, 5D − P1 + 0, 5D + hr • ctgαb = 42, 12 − 0, 5 • 10, 4 − 42, 09 + 0, 5 • 10, 4 + 5, 2 • ctg56 = 3, 5 m
Stopień 2-3 c2 − 3 = P3 − 0, 5D − P2 + 0, 5D + hr • ctgαb = 41, 39 − 0, 5 • 10, 4 − 42, 12 + 0, 5 • 10, 4 + 5, 2 • ctg56 = 2, 8 m
Stopień 3-4 c3 − 4 = P4 − 0, 5D − P3 + 0, 5D + hr • ctgαb = 39, 85 − 0, 5 • 10, 4 − 41, 39 + 0, 5 • 10, 4 + 5, 2 • ctg56 = 2 m
Stopień 0 $\psi_{wzd0} = 90 - arccos\frac{\mathbf{P}_{g} - 4 \bullet h_{r} \bullet ctg\alpha_{c}}{P_{3}} = 90 - arccos\frac{34,17 - 4 \bullet 5,2 \bullet ctg80}{41,39} = 51$
Stopień 1 $\psi_{wzd1} = 90 - arccos\frac{\mathbf{P}_{g} - 3 \bullet h_{r} \bullet ctg\alpha_{c}}{P_{3}} = 90 - arccos\frac{34,17 - 3 \bullet 5,2 \bullet ctg80}{41,39} = 58$
Stopień 2 $\psi_{wzd2} = 90 - arccos\frac{\mathbf{P}_{g} - 2 \bullet h_{r} \bullet ctg\alpha_{c}}{P_{3}} = 90 - arccos\frac{34,17 - 2 \bullet 5,2 \bullet ctg80}{41,39} = 66$
Stopień 3 $\psi_{wzd3} = 90 - arccos\frac{\mathbf{P}_{g} - 1 \bullet h_{r} \bullet ctg\alpha_{c}}{P_{3}} = 90 - arccos\frac{34,17 - 1 \bullet 5,2 \bullet ctg80}{41,39} = 80$
Stopień 4 $\psi_{wzd4} = 90 - arccos\frac{\mathbf{P}_{g}}{P_{g}} = 90 - arccos\frac{34,17}{34,17} = 90$