Interpolacja Lagrange'a $W_{2}\left( x \right) = y_{0}\frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} + y_{1}\frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} + y_{2}\frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})}$
Interpolacja Newton'a $W_{n}\left( x \right) = y_{0} + \frac{y_{0}}{h}\left( x - x_{0} \right) + \frac{^{2}y_{0}}{2!*h^{2}}\left( x - x_{0} \right)\left( x - x_{1} \right)$
Tablica różnic zwykłych: | i | xi f(xi) = yi f(xi) 2f(xi) |
---|
Aproksymacja met. Najmniejszych kwadratów $\left\{ \frac{S_{0}a_{0} + S_{1}a_{1} = T_{0}}{S_{1}a_{0} + S_{2}a_{1} = T_{1}} \right.\ $
xi |
x0 |
x1 |
x2 |
x0y |
x1y |
---|---|---|---|---|---|
S0 |
S1 |
S2 |
T0 |
T1 |
Różniczkowanie numeryczne
Taylor $f_{(x)}^{(1)} = \frac{1}{h}\lbrack\nabla f + \frac{1}{2}\nabla^{2}f\left( x \right) + \frac{1}{3}\nabla^{3}f\left( x \right) + ...\rbrack$
X | f(x) | ∇f(x) | ∇2f(x) | ∇3f(x) | ∇4f(x) |
---|
Stirling $f_{(x)}^{(1)} = \frac{1}{h}\left\lbrack \left( \frac{\text{δf}\left( x - \frac{1}{2}h \right) + \text{δf}\left( x + \frac{1}{2}h \right)}{2} \right) - \frac{1}{6}\left( \frac{\delta^{3}f\left( x - \frac{1}{2}h \right) + \delta^{3}f\left( x + \frac{1}{2}h \right)}{2} \right) + \frac{1}{30}\left( \frac{\delta^{5}f\left( x - \frac{1}{2}h \right) + \delta^{5}f\left( x + \frac{1}{2}h \right)}{2} \right) + \ldots \right\rbrack$
X | f(x) | δf(x) | δ2f(x) | δ3f(x) | δ4f(x) |
---|
r = |1 − f(x)(1)|
$${h = \frac{b - a}{n};\ \ \ \ \ x}_{0} = a;\ \ \ x_{i} = x_{0} + i*h;\ \ \ \ \ y_{i} = f(x_{i})\ \backslash n$$
Metoda trapezów: $\int_{a}^{b}{f\left( x \right)dx \approx h\left\lbrack \frac{y_{0} + y_{n}}{2} + \sum_{i = 1}^{i = n - 1}y_{i} \right\rbrack}$
Metoda Simpsona: $\int_{a}^{b}{f\left( x \right)dx \approx \frac{h}{3}\left( y_{0} + 4y_{1} + 2y_{2} + 4y_{3} + \ldots + y_{n} \right)}$
Układy równań liniowych
Metoda eliminacji Gausa: ---
Metoda Cramera |W|; X1=|W1|/|W|; X2=|W2|/|W|; X3=|W3|/|W|
i | x | y | f(x,y)=dy/dx || y’ | y = h * f(x, y) |
---|
Rozwiązywanie równań różniczkowych zwyczajnych
Metoda Eulera
i | x | y | k=h*f(x,y) | y |
---|---|---|---|---|
0 | X0 | y0 | K1 | k1 |
X0+1/2h | y0+1/2h | K2 | 2k2 | |
X0+1/2h | y0+1/2h | K3 | 2k3 | |
X0+h | y0+h | K4 | K4 | |
$$\frac{1}{6}*\sum_{}^{}{} = y$$ |
Metoda Rungego – Kutty: