Matematyka Dyskretna Test #2 c)
Imię i nazwisko . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . ……. . . . Grupa. . . . . . . . .
Podaj kwantyfikatory i dziedziny zmiennych z, y, z dla których zachodzi x + y = z
____ x∈____ ___ y∈___ ___ z∈___ [x - y = z]
2. Wykaż, że: ∀y (¬Q(y) ∨ ∃x R(x,y)) ⇔ ¬∃y (Q(y) ∧ ∀x ¬R(x,y))
3. . Dana jest baza faktów: a, b, c oraz baza reguł:
R1: If f and e, then g
R2: If a and c, then e
R3: If a and b, then d
R4: If d and e, then f
Czy g daje się wyprowadzić z ww. bazy faktów?
4. Oblicz: MIAX{3,NWW(6,9), NWD(6,9),[MOD(4,mod(10,3))]} =
5. . Wyznacz: NWD(210,231)= i NWW(210,231)=
6. Dany jest zbiór {1,2,3,…,400}. Ile w tym zbiorze jest liczb podzielnych przez
4 lub 5 i niepodzielnych przez 6
7. Rozważmy 15 osobową grupę studencką. Na ile sposobów możemy z tej grupy wybrać trzy osoby na wycieczkę?
8.Dany jest zbiór 10-cio elementowy. Ile sekwencji 5-o elementowych (nie zawierających tych samych liczb) można utworzyć z elementów tego zbioru? Ile podzbiorów 4-o elementowych można utworzyć z elementów tego zbioru?