-----------------------------------------------POCHODNE--------------------------------------------------
sinx′ = cosx
cosx′ = −sinx
$$\text{tg}x^{'} = \frac{1}{\text{cosx}^{2}}$$
$$\text{ctg}x^{'} = \frac{- 1}{\text{sinx}^{2}}$$
$$\arcsin x^{'} = \frac{1}{\sqrt{1 - x^{2}}}$$
$$\arccos x^{'} = \frac{- 1}{\sqrt{1 - x^{2}}}$$
$$\text{arctg}x^{'} = \frac{1}{1 + x^{2}}$$
$$\text{arcctg}x^{'} = \frac{- 1}{1 + x^{2}}$$
ex′ = ex
ax = loga * ax, a > 0
$$\ln x^{'} = \frac{1}{x}$$
$$\operatorname{}x = \frac{1}{\text{xlna}}$$
xα′ = αxα − 1
----------------------------------------Działania na pochodnych:------------------------------------------
$${\ln\left( f\left( x \right) \right)}^{'} = \frac{f^{'}\left( x \right)}{f\left( x \right)}$$
(f(x)g(x))′ = (elnf(x)g(x))′ = eg(x) * lnf(x)
$$\left( \frac{f\left( x \right)}{g\left( x \right)} \right)^{'} = \frac{f^{'}\left( x \right)g\left( x \right) - f\left( x \right)g^{'}\left( x \right)}{{g\left( x \right)}^{2}}$$
(f(x)g(x))′ = f′(x)g(x) + f(x)g′(x)
[f(y)]′ = f(y)′ * y′
-----------------------------------------------------------------------------------------------------------------
----------------------------------------------------CAŁKI----------------------------------------------------
$$\int_{}^{}{x^{a}dx = \frac{x^{a + 1}}{a + 1} + C}$$
$$\int_{}^{}{\frac{\text{dx}}{x} = lnx + C}$$
∫exdx = ex + C
$$\int_{}^{}{a^{x}dx = \frac{a^{x}}{\text{lna}}} + C$$
∫sinx dx = − cosx + C
∫tgxdx = −ln|cox| + C
$$\int_{}^{}{\frac{\text{dx}}{\text{cosx}^{2}} = \text{tgx}^{2} + C}$$
$$\int_{}^{}{\frac{\text{dx}}{\text{sinx}^{2}} = - ctgx + C}$$
--------------------------------------------Działania na całkach:-------------------------------------------
$$\int_{}^{}{\frac{f^{'}\left( x \right)}{f\left( x \right)}dx = \ln\left| f\left( x \right) \right| + C}$$
n=2,3,4,5….
$$\int_{}^{}{\frac{\text{dx}}{\left( x^{2} + a^{2} \right)^{n}} = \frac{1}{2n - 2}*\frac{x}{a^{2}\left( a^{2} + x^{2} \right)^{n - 1}} + \frac{2n - 3}{2n - 2}*\frac{1}{a^{2}}\int_{}^{}\frac{\text{dx}}{\left( a^{2} + x^{2} \right)^{n - 1}}}$$
------------------------------------------Całkowanie przez części:----------------------------------------
∫f(x)g′(x) = f(x)g(x) − ∫f′(x)g(x)dx
-----------------------------------------Rozkład na ułamki proste:----------------------------------------
$$\int_{}^{}{\frac{W\left( x \right)}{P\left( x \right)} = \int_{}^{}\frac{a_{k}}{\left( x - x_{0} \right)^{k}} + \int_{}^{}\frac{a_{k - 1}}{\left( x - x_{0} \right)^{k - 1}} + \ldots + \int_{}^{}\frac{a_{1}}{\left( x - x_{0} \right)} + \int_{}^{}\frac{b_{1}}{\left( x - x_{1} \right)}}$$
np.
$$\frac{4}{x^{2}(x - 2)} = \frac{a_{2}}{{(x - 0)}^{2}} + \frac{a_{1}}{x - 0} + \frac{b}{(x - 2)}$$
$$\frac{4}{x^{2}\left( x - 2 \right)} = \frac{a_{2}\left( x - 2 \right) + a_{1}x\left( x - 2 \right) + bx^{2}}{x^{2}\left( x - 2 \right)} = \frac{x^{2}\left( a_{1} + b \right) + x\left( a_{2} - 2a_{1} \right) - 2a_{2}}{x^{2}\left( x - 2 \right)}$$
$$\left\{ \begin{matrix}
a_{1} + b = 0 \\
a_{2} - 2a_{1} = 0 \\
- 2a_{2} = 4 \\
\end{matrix} \right.\ $$
$$\frac{4}{x^{2}(x - 2)} = \frac{- 2}{x^{2}} + \frac{- 1}{x} + \frac{1}{x - 2}$$
$$\int_{}^{}\frac{4}{x^{2}(x - 2)} = \int_{}^{}\frac{- 2}{x^{2}} + \int_{}^{}\frac{- 1}{x} + \int_{}^{}\frac{1}{x - 2}$$
--------------------------------------------------Podstawienie:----------------------------------------------
$$\int_{}^{}{\frac{\sqrt[n]{\frac{ax + b}{px + q}}}{{(c - x)}^{2}}\text{dx}} = \left\{ \begin{matrix}
\sqrt[n]{\frac{ax + b}{px + q}} = t \\
x = \frac{costam}{costam} \\
dx = \left( \frac{costam}{costam} \right)'dt \\
\end{matrix} \right.\ = \int_{}^{}{\frac{t}{\left( c - \frac{costam}{costam} \right)^{2}}*}(\frac{costam}{costam})'dt$$
---------------------------------------Do podstawienia: (NA BLACHE!)--------------------------------
$$\text{tg}\frac{x}{2} = t$$
$$sinx = \frac{2t}{1 + t^{2}}$$
$$cosx = \frac{1 - t^{2}}{1 + t^{2}}$$
$$dx = \frac{2}{1 + t^{2}}$$
ZASTOSOWANIE CAŁEK:
---------------------------------------------Długość krzywej:-----------------------------------------------
y(x),x∈[a,b]
$$L = \int_{a}^{b}{\sqrt{1 + {(y(x)')}^{2}}\text{dx}}$$
x=x(t), y=y(t), a≤t≤b
$$L = \int_{a}^{b}{\sqrt{{(x')}^{2} + {(y')}^{2}}\text{dt}}$$
$$L = \int_{a}^{b}\sqrt{\left( x^{'} \right)^{2} + \left( y^{'} \right)^{2} + \left( z^{'} \right)^{2}}\text{dt}$$
----------------------------------------------Objętość figury:-----------------------------------------------
V = π∫aby(x)2dx
------------------------------------------Pole powierzchni figury:-----------------------------------------
$$S = 2\pi\int_{a}^{b}{y(x)\sqrt{1 + {y(x)}^{2}}}\text{dx}$$
-----------------------------------------------------------------------------------------------------------------
------------------------------------------------GRANICE:---------------------------------------------------
Jeśli będę chciał zastosować regułę De’Hospitala to MUSZĘ zamienić „n” na „x”!!!! Policzyć granicę, a następnie napisać zdanie:
„Ponieważ granica funkcji …….(ta z „x”) jest równa …….. przy x dążącym do ……(„x” dąży do tego co „n”) , to granica ciągu …….(tego z „n”) jest równa …… ”
NIE WOLNO REGUŁY DE’HOSPITALA STOSOWAĆ PRZY „n” ZAWSZE ZAMIENIAMY NA „x”!!!
Przykład:
$$\operatorname{}\frac{\sin\frac{1}{n}}{\frac{1}{n}} =$$
$$\operatorname{}\frac{\sin\frac{1}{x}}{\frac{1}{x}} = \left\{ \left. \ t = \frac{1}{x} \right\} \right.\ = \operatorname{}\frac{\text{sint}}{t} = \frac{\mathrm{o}}{\mathrm{o}} = \operatorname{}\frac{(sint)'}{t'} = \operatorname{}\text{cost} = 1$$
Ponieważ granica funkcji $\frac{\sin\frac{1}{x}}{\frac{1}{x}}$ jest równa 1 przy × → ∞ , to granica ciągu $\frac{\sin\frac{1}{n}}{\frac{1}{n}}$ jest równa 1.
-----------------------------------------------------------------------------------------------------------------
---------------------------------------POCHODNA Z DEFINICJI:---------------------------------------
$$f^{'}\left( x \right) = \operatorname{}\frac{f\left( x + h \right) - f(x)}{h}$$
Przykład 1:
$$\left( \text{lnx} \right)^{'} = \operatorname{}\frac{\ln\left( x + h \right) - lnx}{h} = \operatorname{}{\frac{ln(\frac{x + h}{x})}{h} =}\operatorname{}\frac{1}{h}\ln{\left( 1 + \frac{h}{x} \right) =}\operatorname{}{\ln{(1 + \frac{h}{x})}^{\frac{1}{}}} = {\ln{\operatorname{}{(1 + \frac{h}{x}}})}^{\frac{1}{h}} = \ln{\operatorname{}{{(1 + \frac{1}{\frac{x}{h}})}^{\frac{x}{h}*\frac{1}{x}} = \ln{e^{\frac{1}{x}} = e^{\frac{1}{x}}}}}$$
Przykład 2:
$$\left( \sqrt{x} \right)^{'} = \operatorname{}\frac{\sqrt{x + h} - \sqrt{x}}{h} = \operatorname{}\frac{\left( \sqrt{x + h} - \sqrt{x} \right)\left( \sqrt{x + h} + \sqrt{x} \right)}{h\left( \sqrt{x + h} + \sqrt{x} \right)} = \operatorname{}\frac{x + h - x}{h\left( \sqrt{x + h} + \sqrt{x} \right)} = \operatorname{}{\frac{1}{\sqrt{x + h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}}$$
-----------------------------------------------------------------------------------------------------------------