wm cw kratownica2(1), PW IŚ, Inżynier, SemII, WMiMB


Kratownica 2

  1. Określić stopień statycznej niewyznaczalności kratownicy jak na rysunku.

  2. Wyznaczyć siły reakcji podparć i siły w prętach kratownicy

obliczenia wykonać wykorzystując metodę równoważenia węzłów a
następnie sprawdzić otrzymane wyniki metodą Rittera (2 przekroje) lub

obliczenia wykonać wykorzystując metodę Rittera a następnie sprawdzić
otrzymane wyniki metodą równoważenia węzłów (2 węzły)

  1. Wykorzystując zasadę prac wirtualnych wyznaczyć siły w prętach ................

0x01 graphic

  1. Stopień statycznej niewyznaczalności

S = LNS - LRR = r + p - 2 x w = (3+9) - 2·6 = 12-12 = 0

LNS - liczba niewiadomych statycznych

r - liczba reakcji zewnętrznych

p - liczba prętów

LRR - liczba możliwych do ułożenia liniowo niezależnych równań równowagi
w - liczba węzłów

b) Wyznaczenie reakcji zewnętrznych z równań równowagi globalnej

∑X1= HA + P - 2P = 0 , HA = P =10 kN

∑MA = -P·a - P·2a - P·3a - 1/2P·4a+VB·4a -P·2a - P· 3/2a + 2P· 3/2a = 0

VB = 17/8 P = 21,25 kN

∑X2= VA +VB -1/2P- P- P- P- P- 1/2P = 0 , VA= 5P - VB = 23/8 P = 28,75 kN

Wyznaczenie sił w prętach metodą równoważenie węzłów

Węzeł A

0x08 graphic
∑X2 = -1/2P + VA+ sinα ·NA2= 0

NA2= (1/2P - 23/8P)/sinα = -19/8P / sinα = -28,54 kN

∑X1= HA + NA1 + NA2 ·cosα= 0

NA1= 19/8P·ctgα- P= 5,83 kN

Węzeł B

0x08 graphic
∑X2= VB - 1/2P + NB4· sinα = 0

NB4 =( 1/2P - 17/8 P) = -13/8P/sinα = - 19,53 kN

∑X1= -NB1 -NB4 ·cosα = 0

NB1 = 13/8P·ctgα = 10,83 kN

Węzeł 3

0x08 graphic
∑X1= N32 ·cosα - N34 · cosα = 0

N32 = N34

∑X2= -P - 2N32 ·sinα = 0

N32 = - 1/2P / sinα = - 6,01 kN

Węzeł 1

0x08 graphic
∑X2= N12 · sinα + N14 · sinα - P = 0

N12 · sinα + N14 · sinα - P = 0

N12= (P/sinα- N14)

∑X1 = -N1A + N1B -N12 · cosα + N14 ·cosα =0

N14 - N12 =19/8P /sinα - P/ cosα - 13/8P / sinα

2N14 = P /sinα + 19/8P /sinα - P/ cosα - 13/8P / sinα

N14= 14/16P / sinα - 1/2P/ cosα = 1,51 [kN]

N12= P/sinα -( 14/16P / sinα - P/ 2cosα )= 10,51 kN

Węzeł 4

0x08 graphic
∑X1 = -N42 - N41 · cosα - N43· cosα - 2P +N4B· cosα=0

N42 =-(14/16P/ sinα - 1/2P/cosα)·cosα+1/2P·ctgα -2P-13/8P·ctgα

N42 = -28,34 kN

0x08 graphic

[kN]

Sprawdzenie metodą Rittera. Zakładamy, że siły N32= N34 są znane, zostały wyznaczone metodą równoważenia węzłów

0x08 graphic
przekrój β-β

∑MB = NB1· 3/2a + 1/2P · a - VB · a =0

NB1 = ( -1/2P · a +17/8 P·a)/ 3/2a = 26/24a= 10,83 kN

przekrój α-α0x08 graphic

∑MA = NA1· 3/2a + 1/2P · a+ HA· 3/2a - VA ·a = 0

NA1 = ( -1/2P · a - P ·3/2a +23/8 P·a)/ 3/2a= 7/12P = 5,83 kN

3



Wyszukiwarka

Podobne podstrony:
wm cw kratownica1(1), PW IŚ, Inżynier, SemII, WMiMB
wm cw temat, PW IŚ, Inżynier, SemII, WMiMB
wm cw rama1(1), PW IŚ, Inżynier, SemII, WMiMB
wm wy egz180902 zad, PW IŚ, Inżynier, SemII, WMiMB
wm wy egz180902 teor, PW IŚ, Inżynier, SemII, WMiMB
wm wy egz210602 zad, PW IŚ, Inżynier, SemII, WMiMB
wm wy egz180902 zad, PW IŚ, Inżynier, SemII, WMiMB
WMiMB, PW IŚ, Inżynier, SemII, WMiMB
zadanie 1, PW IŚ, Inżynier, SemII, WMiMB
Geodezja test, PW IŚ, Inżynier, SemII, Geodezja, Egzamin
Geodezja test, PW IŚ, Inżynier, SemII, Geodezja, Egzamin
Zagęszczanie osadów, PW IŚ, Inżynier, sem V, TOŚ
Analiza fiz-chem sciekow, PW IŚ, Inżynier, sem V, TOŚ
scieki2, PW IŚ, Inżynier, sem V, TOŚ
Projekt z urządzen 2 do WYDRUKU, PW IŚ, Inżynier, sem V, Urządzenia, projekt
projekt Wenda, PW IŚ, Inżynier, sem V, Urządzenia, projekt
Meteorologia, PW IŚ, Inżynier, sem III, meteorologia

więcej podobnych podstron