zagadnienia egzam Kuklińskie Mechanika

Zagadnienia na egzamin:
1. równania ruchu w układzie prostokątnym i biegunowym,
2. równanie toru ruchu punktu,
3. prędkość i przyspieszenie w ruchu prostoliniowym,
4. predkość i przyspieszenie w ruchu płaskim krzywoliniowym (w układzie prostokątnym i biegunowym),
5. ruch płaski: zależność pomiedzy prędkościami punktów ciała sztywnego, chwilowy środek obrotu,
6. ruch kulisty ciała sztywnego: chwilowa oś obrotu.

1.

2

3.

Prędkość:

Dla ruchu wzdłuż prostej prędkość definiuje się jako granicę przyrostów przesunięcia do przyrostu czasu w jakim nastąpił ten przyrost, dla malejących odcinków czasu. Prędkość ta zwana jest prędkością chwilową, w przeciwieństwie do prędkości średniej wyznaczonej na podstawie dłuższego odcinka czasu i drogi.

Przyspieszenie – wektorowa wielkość fizyczna wyrażająca zmianę wektora prędkości w czasie.


$$a = \frac{\text{dV}}{\text{dT}}$$

5. Prędkość punktów ciała sztywnego

Rozważmy zależności pomiędzy prędkościami dwóch dowolnych punktów ciała sztywnego (rys. 4).

Rys. 4. Zależności pomiędzy prędkościami punktów A i B ciał sztywnego

Położenie tych punktów określają promienie wodzące i . Prędkości tych punktów wynoszą

, , (2)

. (3)

Zauważmy, że wektor wprawdzie zmienia swój kierunek i położenie, ale jego długość jest stała:

. (4)

Różniczkując równanie (4) względem czasu otrzymujemy

. (5)

Różniczkując równanie (3) i biorąc pod uwagę równanie (2) otrzymujemy

. (6)

Podstawiając równanie (6) do równania (5) mamy

. (7)

Biorąc pod uwagę definicję iloczynu skalarnego i rys. 4 otrzymujemy

. (8)

Otrzymana zależność pozwala na sformułowanie poniższego twierdzenia.

Twierdzenie

Rzuty prędkości dowolnie wybranych dwóch punktów ciała sztywnego na łączącą je prostą są sobie równe.

Ruch płaski można także rozważać jako chwilowy ruch obrotowy. Na tej podstawie twierdzi

się, że w każdej chwili czasu prędkości punktów bryły są takie jakby bryła obracała się wokół

pewnej osi prostopadłej do płaszczyzny ruchu (płaszczyzny kierującej). Oś ta jest chwilową

osią obrotu, a punkt jej przecięcia z płaszczyzną kierującą nosi nazwę chwilowego środka

obrotu.

Znając prędkość punktu A, położenie chwilowego środka obrotu bryły oraz kierunek wektora

prędkości punktu B, wartość VB można obliczyć wg schematu:

AS

BS BS

AS B B A

ω

6. Oś obrotu – prosta w przestrzeni określająca kierunek obrotu danego ciała. Wyznacza ona układ odniesienia, względem którego wyznacza się moment bezwładności ciała. Prędkość kątowa jest zawsze równoległa do osi obrotu. Chwilowa oś obrotu występuje, gdy wektor prędkości kątowej nie jest równoległy do wektora momentu pędu ciała.


Wyszukiwarka

Podobne podstrony:
Mechanika zagadnienia, II rok, Mechanika
Zagadnienia na egzamin z Mechaniki Ogo cc 81lnej I(1)x
ZAGADNIENIA NA EGZAMIN Z MECHANIKI TECHNICZNEJ II DLA SEMESTRU III, sem III, +Mechanika Techniczna I
Zagadnienia z MES (1), UCZELNIE, Mechanika i Budowa Maszyn UWM OLSZTYN [MECHANICY], Semestr 4, Metod
mechanika-zagadnienia, INNE KIERUNKI, mechanika
oiurm zest zagadn egzam
MECHANIKA TECHNICZNA II - ZAGADNIENIA NA EGZAMIN, +Mechanika Techniczna II - Wykład.Ćwiczenia.Labora
Egzamin z Wytrzymałości Materiałów II - Zagadnienia 2012, PWr Mechaniczny [MBM], Semestr 4, Wytrzyma
Zagadnienia na egzamin z Mechaniki Gruntów, Materiały na egzamin mechanika gruntów
zagadnienia egzam, Płyta farmacja Poznań, III rok, Chemia leków, egzamin
zagadnienia egzam Biochemia 10 11, studia fizjoterapia
odp zagadnienia egzam sciaga, Leśnictwo UWM Olsztyn, Semestr I, Gleboznawstwo, Ezgamin
Zagadnienia na zaliczenie (mechanika) 07
Opinia publiczna zima 2010-11 zagadnienia egzam, Materiały, Opinia publiczna
Psych.ogólna-zagadnienia egzam.NIEST, Studia, ROK I, pedagogika
Techniki legislacyjne - zagadnienia egzam, Gospodarka przestrzenna - notatki, Techniki legislacyjne
pdt zest zagadn egzam
Grunty zagadnienia, Budownictwo PK, Mechanika gruntów

więcej podobnych podstron