Enzymy

Enzymy

Enzymy – wielkocząsteczkowe, w większości białkowekatalizatory przyspieszające specyficzne reakcje chemiczne poprzez obniżenie ich energii aktywacji.

Zarys historyczny:

Struktura: Większość znanych enzymów to białka  o zróżnicowanej wielkości, od kilkudziesięciu aminokwasów w łańcuchu i monomerycznej budowie (na przykład tautomeraza 4-oksokrotonianu (4-OT) zbudowana jest z 62 aminokwasów), do ponad 2500 w zwierzęcej syntezie kwasów tłuszczowych. Aktywność enzymów jest determinowana ich strukturą czwartorzędową (ułożeniem przestrzennym). Enzymy są zazwyczaj dużo większe od substratów, które przerabiają, ale z kolei zwykle tylko kilka kluczowych aminokwasów jest bezpośrednio zaangażowanych w katalizę. Region, który bezpośrednio wiąże się i oddziałuje z substratem oraz zawiera kluczowe do przebiegu reakcji reszty aminokwasowe, nazywany jest miejscem aktywnym (centrum aktywnym). Prócz niego enzymy mogą zawierać miejsca wiązania kofaktorów – niezbędnych do aktywności enzymatycznej lub jej regulacji. Enzymy mogą także zawierać dodatkowe miejsca wiązania małych cząsteczek, na przykład pośrednich lub bezpośrednich produktów czy substratów szlaków metabolicznych obsługiwanych przez enzym, które związane mogą dodatkowo regulować aktywność enzymu na zasadzie sprzężenia zwrotnego. Jak każde białko, enzymy są syntezowane jako długie łańcuchy aminokwasowe, które następnie zwijają się i przybierają odpowiednią strukturę przestrzenną. Indywidualne, zwinięte łańcuchy białkowe, mogą także asocjować w większe kompleksy. Takie enzymy nazywa się wtedy multimerycznymi (wielopodjednostkowymi). W przypadku asocjacji kilku takich samych peptydów (podjednostek) mówi się o homomerach (np. homodimer – kompleks złożony z dwóch jednakowych peptydów), a gdy asocjują różne jakościowo podjednostki, o heteromerach (np. heteropentamer – kompleks pięciu różnych łańcuchówpeptydowych). Asocjacja podjednostek enzymów może być wymagana by dopełnić nawzajem swoje funkcje, by w ogóle móc katalizować reakcję biochemiczną, lub by obsługiwać wielokrotność tej samej reakcji czy cały ich szereg (odcinek szlaku metabolicznego).

Apoenzym : białkowa część enzymu, która po połączeniu z koenzymem lub grupą prostetyczną stanowi holoenzym. Z reguły dopiero holoenzym jest w pełni funkcjonalnym enzymem, bowiem koenzymy odgrywają kluczową rolę w mechanizmie reakcji enzymatycznej. Apoenzym decyduje o swoistości enzymu oraz często o rodzaju reakcji jaką enzym jest zdolny katalizować. W badaniu metaloenzymów ważną część stanowi przygotowanie apoenzymów in vitro, polegające na usunięciu z nich natywnych jonów metali za pomocą różnych czynników chelatujących. Przygotowanie nieaktywnego apoenzymu, któremu można całkowicie przywrócić aktywność przez dodanie odpowiedniego jonu metalu, potwierdza niezbędność tego jonu w układzie enzymatycznym.

W enzymach centrum aktywne zlokalizowane jest w kieszeni lub szczelinie apoenzymu. Stanowi je grupa aminokwasów, które leżą blisko siebie w trójwymiarowej cząsteczce, choć często są od siebie bardzo oddalone w sekwencji. Odpowiada za wiązanie substratów i grup prostetycznych z wytworzeniem kompleksu ES (enzym-substrat), w którym reagujące fragmenty cząsteczek znajdują się w pobliżu centrum katalitycznego. Może przy tym dochodzić do zmiany konformacji zarówno substratów, jak i enzymu.

Specyficzność: Enzymy charakteryzują się zwykle dużą specyficznością pod względem katalizowanej reakcji, jak i również konwertowanych substratów. Za wysoką specyficzność odpowiada kształt cząsteczki enzymu dopasowany do substratów geometrycznie, ale także pod względem oddziaływań hydrofobowo-hydrofilowych oraz elektrostatycznych. Enzymy wykazują także wysoki poziom stereospecyficznościregioselektywności i chemoselektywności.

Modele tłumaczące tworzenie się kompleksu enzym- substrat:

Mechanizm działania enzymów: Enzymy mogą na kilka różnych sposobów zmniejszać swobodną energię aktywacji Gibbsa (ΔG):

Termodynamika reakcji enzymatycznych: Tak jak wszystkie katalizatory enzymy nie zmieniają stanu równowagi reakcji chemicznej, a jedynie przyspieszają jego ustalenie. Zazwyczaj w obecności enzymu reakcja zachodzi w kierunku takim samym, w jakim by zachodziła spontanicznie, jedynie wzrasta jej szybkość. Jednak nieobecność enzymu oznacza, że najbardziej wydajnie (najszybciej) będzie zachodzić reakcja najbardziej faworyzowana energetycznie (o najniższej energii S*) i nie zawsze oznacza to, że z grupy możliwych reakcji jest to ta sama, która byłaby katalizowana przez enzym. Enzym może uczynić reakcję bardziej faworyzowaną, która w normalnych warunkach nie byłaby energetycznie optymalna.

Jest to termodynamicznie możliwe, gdyż enzymy sprzęgają reakcje niekoniecznie wydajne energetycznie (takie, które spontanicznie zachodziłyby niezwykle wolno) z reakcjami wybitnie energetycznie korzystnymi, tak że taka para reakcji, w sumie, jest energetycznie faworyzowana i korzystna. Przykładem może być sprzężenie reakcji hydrolizy ATP z innymi licznymi reakcjami chemicznymi, wymagającymi do zajścia dużej ilości energii.

Enzymy zwiększają szybkość reakcji zachodzącej w obu kierunkach. Na przykład, anhydraza węglanowa katalizuje swoją reakcję dwukierunkowo w zależności od stosunku stężenia substratów i produktów.

Jednak, gdy w danych warunkach szybkość reakcji zachodzącej w konkretną stronę jest bardzo duża (równowaga mocno przesunięta w jedną ze stron), w praktyce oznacza to katalizę nieodwracalną i reakcja zachodzi tylko w tym jednym kierunku.

Kinetyka reakcji enzymatycznych: Kinetyka enzymów opisuje mechanizmy wiązania substratów przez enzymy oraz ich przekształcania w produkty. Dane wykorzystywane do analizy kinetycznej pochodzą z reakcji enzymatycznych przeprowadzonych w kontrolowanych warunkach umożliwiających śledzenie zmieniających się parametrów w czasie.

W 1902 roku Victor Henri zaproponował kwantytatywną teorię kinetyki enzymów, ale wyniki jego badań okazały się nieprzydatne, ponieważ zaniedbał on wpływ stężenia jonów wodorowych (pH). Dopiero kilka lat później, w 1909 roku, Peter Lauritz Sørensen zdefiniował logarytmiczną skalę pH oraz zaproponował koncepcję roztworów buforowych. Niemiecki chemikLeonor Michaelis i jego kanadyjska współpracowniczka odbywająca staż podoktorski Maud Leonora Menten, powtórzyli wtedy eksperymenty, które przeprowadzał Henri i zaproponowali prosty model kinetyki aktywności enzymatycznej znany jako kinetyka Henri-Michaelis-Menten (znany również jako kinetyka Michaelis-Menten). Ich dzieło rozwinęli później G. E. Briggs i J. B. S. Haldane, których równania kinetyki aktywności enzymatycznej są do dziś używane w niezmienionej formie.

Głównym założeniem jakie podał Henri, był dwuetapowy przebieg reakcji katalizowanej przez enzymy. W pierwszym etapie substraty wiążą się odwracalnie z enzymem, tworząc ze stałą szybkości k1, kompleks enzym-substrat (ES), nazywany czasem kompleksem Michaelisa. W następnym etapie, kompleks ten może się rozpaść na dwa różne sposoby. Może dysocjować do E i S ze stałą szybkości k-1 lub może dojść do chemicznej zmiany substratów i uwolnienia produktów ze stałą szybkości k2, przy czym zakłada się, że produkt reakcji nie może ulec powrotnemu przekształceniu w wyjściowy substrat. Wyrażenie wiążące szybkość katalizy ze stężeniem substratu i enzymu oraz z szybkościami poszczególnych etapów reakcji nazywamy równaniem Michaelisa-Menten:

gdzie: V0 – szybkość początkowa, S – stężenie substratu, Km – stała Michaelisa-Menten.

Czynniki wpływające na aktywność enzymów: Ogólna aktywność enzymów, podobnie jak wszystkich białek, jest zależna od parametrów fizykochemicznych środowiska: temperatury, pHsiły jonowej i innych. Maksimum aktywności enzymu leży w pewnym optymalnym zakresie danego parametru środowiskowego. W zależności od enzymu, położenie optimum może być różne, a jego zakres szerszy lub węższy. Także ogólny kształt wykresu zależności aktywności danego enzymu od parametru środowiska jest różny dla różnych enzymów, w zależności od ich pochodzenia, budowy itp. Dla czynników środowiska bezpośrednio wpływających na strukturę drugorzędowa białka (i wyższe organizacje struktury), jak temperatura czy pH, charakterystyczny jest gwałtowny spadek aktywności enzymów poza optimum (lub po przekroczeniu go, w przypadku temperatury), związany z denaturacją enzymów. W zależności od enzymu, taka denaturacja może być odwracalna lub nie. Parametry środowiska mogą stanowić podstawę kontroli aktywności enzymów.

Wpływ temperatury na aktywność enzymów nie jest prostą zależnością. Aktywność rośnie wraz ze wzrostem temperatury, jednakże tylko w takim zakresie temperatury, w którym enzym pozostaje stabilny. Po przekroczeniu temperatury krytycznej, następuje denaturacja termiczna enzymów, w wyniku czego aktywność gwałtownie spada. Przeciętnie szybkość reakcji enzymatycznych wzrasta dwukrotnie przy wzroście o każde 10 °C w zakresie temperatur niedenaturujących struktury enzymu (Q10=2). Zatem także parametr Q10 ma zastosowanie tylko w niedenaturującym zakresie temperatur i jest on charakterystyczny dla danego enzymu, i zależny od energii aktywacji katalizowanej reakcji. W temperaturze optymalnej aktywność enzymu jest największa. Większość enzymów ulega powolnej denaturacji nawet w temperaturach optymalnych i niższych niż krytyczna. Zależy to od natury samego enzymu, stopnia jego oczyszczenia (w preparatach), a także od pH, siły jonowej i pozostałych parametrów. Najwyższa temperatura, w której jeszcze nie zachodzi termiczna dezaktywacja enzymu w danych warunkach określa tak zwaną termostabilność enzymu.

Inhibicja: Aktywność wielu enzymów może być hamowana przez różne typy inhibitorów. Inhibicja taka może być odwracalna lub nieodwracalna. Ostatnia ma miejsce wtedy, gdy cząsteczki inhibitora wiążą się z enzymem trwale (np. kowalencyjnie), co doprowadza do sytuacji zablokowania aktywności danej cząsteczki enzymu na stałe.

Nazewnictwo enzymów: Zwykle nazwy enzymów pochodzą od substratów przetwarzanych w reakcji lub od samej reakcji przez nie obsługiwanych, do których dodaje się przyrostek -aza. Przykładowo celulazato enzym rozkładający celulozę, a ligaza DNA to enzym ligujący cząsteczki DNA. Często nazwa jest dwuczłonowa, gdzie pierwszy człon określa reakcję, a drugi jej substrat, np.dehydrogenaza alkoholowa. Stąd różne enzymy obsługujące takie same reakcje lub przetwarzające te same substraty, nazywane izoenzymami, mimo tego, że chemicznie są cząsteczkami o różnym składzie aminokwasowym i właściwościach, będą miały takie same nazwy. Czasami nazwa enzymu nie pochodzi od reakcji obsługiwanej w warunkach fizjologicznych, in vivo, ale od jego aktywności in vitro. Przykładem jest izomeraza glukozowa, wykazująca in vitro aktywność izomeracji glukozy we fruktozę, ale in vivo będącaizomerazą ksylozową. Także zamiast od nazwy reakcji, enzymy są niekiedy nazywane od ogólnego procesu, jaki przeprowadzają, jak np. gyraza DNA (czyli topoizomeraza II), której nazwa pochodzi od greckiego słowa γύρος, czyli obracać i przyrostka -aza. Z kolei niektóre cząsteczki biologiczne, mimo nazwy z przyrostkiem -aza, nie są enzymami lub definiowana przez nazwę aktywność nie jest aktywnością enzymatyczną. Przykładem są flipazy. Duża część enzymów jest nazywana zwyczajowo, historycznie, jak np. pepsyna (nazwa pochodząca od greckiego słowa pepsis oznaczającego trawienie) czy papaina (enzym z owocupapai). Nazwy niektórych enzymów powstały także poprzez dodanie przyrostka -zym (tego samego co w słowie enzym) do ogólnej funkcji cząsteczki lub opisu, skrótu opisowego. Przykładami są lizozym (od lizujących właściwości wobec bakterii) czy granzym. Enzymy restrykcyjne są nazywane według własnej nomenklatury. Ich nazwa składa się z litery nazwy rodzajowej i dwóch pierwszych liter nazwy gatunkowej mikroorganizmu-źródła enzymu, pisanymi kursywą, po których występują cyfry arabskie lub litery oznaczających szczep mikroorganizmu. Nazwa zakończona jest cyfrą rzymską wskazującą, jako który w kolejności chronologicznej został wyizolowany z danego organizmu dany enzym restrykcyjny. Na przykład EcoRI, to pierwszy wyizolowany enzym restrykcyjny z bakterii Escherichia coli, szczep RY13

W celu uregulowania i ujednoznacznienia nazewnictwa enzymów, Komitet Nazewnictwa Międzynarodowej Unii Biochemii i Biologii Molekularnej w latach 1956-1972 opracował dla nich nomenklaturę naukową – numer EC. Według niej, każdy enzym jest opisany przez ciąg czterech segmentów cyfr, oddzielonych od siebie kropką, poprzedzonych literami "EC". I tak pierwsza liczba określa numer klasy enzymu, druga liczba- numer podklasy enzymu, trzecia- numer pod podklasy, a czwarta numer enzymu. Pierwsza cyfra dzieli enzymy, według mechanizmu reakcji przez nie katalizowanych, na sześć głównych klas.

EC 1 oksydoreduktazy:  enzymy katalizujące reakcje utleniania i redukcji (reakcje redoks). Oksydoreduktazy przenoszą elektrony i atomy wodoru pomiędzy cząsteczkami reduktora (donora wodoru) i utleniacza (akceptora wodoru), np. DH2 + A ⇌ D + AH2, gdzie D – donor wodoru; A – akceptor wodoru.

Do oksydoreduktaz należą m.in.:

Oksydoreduktazy wykorzystują np. NADPH/NADH/FADH2 jako substancję redukującą, a NAPD+/NAP+/FAD jako substancję utleniającą.

EC 2 transferazy: klasa enzymów katalizujących reakcję przeniesienia grupy chemicznej (np. tiolowej (-SH), aminowej (-NH2), metylowej (-CH3) czy fosforanowej (-OPO3H2)) lub atomu z jednej cząsteczki (donora) na drugą (akceptora), co można zobrazować: AB + C → A + BC. Transferazy dzielą się na dziewięć podklas, w zależności od grupy chemicznej, przenoszonej przez dany enzym:

EC 3 Hydrolazy : enzymy rozcinające wiązanie chemiczne w procesie hydrolizy. Do grupy tej należy wiele enzymów trawiennych. Cechą charakterystyczną hydrolaz jest fakt, że nie posiadają one koenzymów. Ich działanie można przedstawić ogólnie jako: AB + H2O → A-H + B-OH

Przykłady hydrolaz:

EC 4 Liazy : czwarta klasa enzymów odwracalnie lub nieodwracalnie katalizujących odszczepienie grup bez udziału wody.

EC 5 Izomerazy: to enzymy zmieniające cząsteczkę w jej izomer, czyli zmieniające układ atomów w cząsteczce (nie dodają żadnych atomów, ani nie odcinają, jedynie zmieniają ich ułożenie). Przenoszą w obrębie cząsteczki pojedyncze atomy lub całe ich grupy. Można to graficznie zobrazować: AB → BA.

EC 6 Ligazy (Syntetazy) – enzymy szóstej klasy, które katalizują powstawanie wiązań chemicznych pomiędzy cząsteczkami, zużywając do tego energię pochodzącą z hydrolizy ATP. W zależności od typu tworzonego wiązania (C-O, C-S, C-N, lub C-C) dzielą się na podklasy według klasyfikacji numerycznej EC. Ligazy DNA uczestniczą w łączeniu nici kwasu dezoksyrybonukleinowego, karboksylaza pirogronianowa katalizuje przyłączenie dwutlenku węgla do pirogronianu – tworzenie szczawiooctanu. Działanie Ligaz można zobrazować graficznie: A + B → AB.

Biologiczne funkcje enzymów:

Zastosowanie enzymów w diagnostyce: Ponieważ aktywność enzymatyczna i jej ścisła kontrola są elementem homeostazy organizmu, defekt w jednym nawet enzymie (mutacja zaburzająca funkcję, nadprodukcja, za mała produkcja, delecja) czy mechanizmach kontroli jego aktywności, może prowadzić do stanu chorobowego lub śmierci organizmu. Zmiany aktywności enzymów we krwi, często są odzwierciedleniem zmian patologicznych zachodzących w narządach. Nowoczesna diagnostyka enzymologiczna opiera się na założeniu, że uszkodzenie narządu pociąga za sobą uszkodzenie struktur komórkowych lub zmianę przepuszczalności błon komórkowych. Uszkodzenia błon powodują ucieczkę enzymów, zwiększając tym samym ich ilość w cieczach ustrojowych i wydalinach, takich jak: krewpłyn mózgowo-rdzeniowymoczciecze wysiękowe i przesiękowesok żołądkowy czy dwunastniczy. W latach 60 Richterich i Hess stworzyli kliniczny podział enzymów osocza na:

Zastosowanie przemysłowe enzymów: Enzymy są stosowane w przemyśle chemicznymspożywczym i innych, głównie jako niezwykle specyficzne, bezpieczne w użyciu katalizatory. Jakkolwiek ich wadą jest wrażliwość na skrajne warunki (np. temperatura, pH), niestabilność w środowiskach innych niż wodne (np. rozpuszczalników organicznych) oraz stopniowa degradacja podczas użytkowania. Także wysoka specyficzność, istotna z punktu biologicznego, w przemyśle jest ograniczeniem ich uniwersalności. Stąd inżynieria białka jest dynamicznie rozwijającą się dziedziną nauki, zajmującą się badaniem i projektowaniem enzymów o nowych właściwościach lub poprawionej wydajności czy stabilności. Aktualne podejście do tego zagadnienia to ukierunkowane projektowanie lub ewolucja in vitro. Obecnie enzymy produkowane są na skalę przemysłową, głównie z zastosowaniem mikroorganizmów modyfikowanych genetycznie.


Wyszukiwarka

Podobne podstrony:
enzymy
pros 4 Enzymy 1
inhibicja enzymy wykresy
ENZYMY prezentacja biochemia
Enzymy
enzymy prezentacja
kol enzymy
enzymy
odpowiedzi-Habryka zagadnienia do kolosa, INZYNIERIA-BIO, ENZYMY, A Habryka Zamawiany i Aut2
pytania-enzymy, Technologia żywności UWM, enzymologia
enzymy
Enzymy
biochemia enzymy2
Enzymy podział na klasy
07 Enzymy 1
08 Enzymy 2
enzymy restrykcyjne
enzymy (2)
enzymy3

więcej podobnych podstron