KATEDRA PRZERÓBKI PLASTYCZNEJ
PRZERÓBKA PLASTYCZNA – PROJEKT WYTŁACZANIA
3MM-DI, P1
Mateusz Baran
Wojciech Bonar
Paweł Chuchla
Dane:
materiał | Re [MPa] | Rm [MPa] | n | C [MPa] | r | Dk [MPa] | d [mm] | h [mm] | go [mm] |
---|---|---|---|---|---|---|---|---|---|
Al | 20 | 95 | 0,48 | 160 | 0,8 | 280 | 250 | 205 | 3 |
Obliczenia geometrii wsadu:
$$V_{o} = \ V_{w} = \ \frac{\left\lbrack \pi{D_{k}}^{2}g_{o} - \ \pi d^{2}g_{o} \right\rbrack + \left\lbrack \pi\left( d + 2g_{o} \right)^{2}h - \pi d^{2}\left( h - g_{o} \right) \right\rbrack}{4}$$
Vo = 673541, 76 mm3
$$V_{o} = \frac{\pi{D_{o}}^{2}}{4}g_{o}\ \rightarrow \ D_{o} = \ \sqrt{\frac{4V_{o}}{\pi g_{o}}}$$
Do = 534, 65 mm
Do obliczonej średnicy Do należy dodać 7% jako naddatek technologiczny
Do = 534, 651, 07 = 572 mm
Obliczenia granicznej wartości współczynnika odkształcenia βgr:
$\beta = \frac{D_{o}}{d} = \frac{572}{250} = 2,29$ – współczynnik odkształcenia
Do – średnica krążka wyjściowego
d – średnica wytłoczki
βgr = βmaterialβgeometria wsaduβgeometria nadzedziβtarcie
gdzie:
βm – czynnik uwzględniający właściwości materiału
$$\beta_{m} = (1,56 + 0,12r)(1 + 0,08n)(1,05 - 0,09\frac{R_{e}}{R_{m}})$$
βm = 1, 77
βgw – czynnik uwzględniający geometrię wsadu
$$\beta_{\text{gw}} = 0,65 + 18\left( \frac{g_{o}}{D_{o}} \right) + 0,15{(\frac{D_{k}}{d + 2g_{o}})}^{\frac{1}{2}}$$
βgw = 0, 9
βgn – czynnik uwzględniający geometrię narzędzi
$$\beta_{\text{gn}} = \left( 1,08 - \frac{0,57}{\rho_{m}} \right)\left( 1,02 - \frac{0,19}{\rho_{s}} \right)$$
ρm = (2÷6)go - promień zaokrąglenia matrycy
Przyjmujemy ρm = 4go
ρm = 4go = 43 = 12 mm
ρs = (5÷10)go - promień zaokrąglenia stempla
ρs = 4go = 43 = 12mm
$$\mathbf{\beta}_{\mathbf{\text{gn}}} = \left( 1,08 - \frac{0,57}{12} \right)\left( 1,02 - \frac{0,19}{12} \right) = \ 1,04$$
βt – czynnik uwzględniający tarcie
βt = 2exp(0,1−μ1) − 1
gdzie:
µ1 = 0,08 – dla smaru – Mo2s + olej
µ1 = 0,10 – dla smaru – olej maszynowy
µ1 = 0,15 – dla smaru – folia PE
µ1 = 0,20 – bez smarowania
przyjmujemy µ1 = 0,08 – dla smaru – Mo2s + olej
βt = 2exp(0,1−0,08) − 1 = 1, 04
βgr = βmβgwβgnβt = 1, 77 0, 91, 041, 04 = 1, 72
Musi być spełniona zależność:
β < β(1) β(2)β(3)β(4)
przyjmujemy:
β(1) = βgr = 1,72
β(2) = 0,64 · 1,72 = 1,104
β(3) = 0,67 · βgr = 1,72
β(4) = βgr = 1,72
sprawdzamy:
3,82096 < 1,72 · 1,72 · 1,104 · 1,72
3,82096 < 5,6494 – zależność prawdziwa
Wykonamy w tym procesie wytłaczania 3 operacje tłoczenia
Obliczamy geometrię wytłoczek pośrednich:
$$d_{1} = \ \frac{D_{o}}{\beta_{1}} = \frac{572}{1,72} = 332\text{\ mm}$$
$$d_{2} = \ \frac{d_{1}}{\beta_{2}} = \frac{332}{1,104} = 300,86\text{\ mm}$$
$$d_{3} = \ \frac{d_{2}}{\beta_{3}} = \frac{300,86}{1,72} = 174,6\text{\ mm}$$
$$h_{1} = \ \frac{{D_{o}}^{2} - {d_{1}}^{2}}{4(d_{1} + g_{o})} = \ \frac{572^{2} - 332^{2}}{4 (332 + 3)} = 162\text{\ mm}$$
$$h_{2} = \ \frac{{D_{o}}^{2} - {d_{2}}^{2}}{4(d_{2} + g_{o})} = \ \frac{572^{2} - {300,86}^{2}}{4 (300,86 + 3)} = 194,79\text{\ mm}$$
$$h_{3} = \ \frac{{D_{o}}^{2} - {d_{3}}^{2}}{4(d_{3} + g_{o})} = \ \frac{{572}^{2} - {174,6}^{2}}{4 (174,6 + 3)} = 417,94\text{\ mm}$$
Obliczenia wielkości docisku:
Nacisk jednostkowy q (wzór Siebla):
$$q_{1} = 0,00225\left\lbrack \left( \beta_{1} - 1 \right)^{2} + 0,01\ \frac{\beta_{1}d_{1}}{2g_{o}} \right\rbrack C\left( \frac{n}{e} \right)^{n}$$
q1 = 0, 1505MPa
Całkowita siła docisku Q:
$$Q_{1} = \ \frac{\pi}{4}\lbrack{D_{o}}^{2} - \left( d + 2\rho_{m} \right)^{2}\rbrack q_{1}$$
Q1 = 29, 82 kN
Obliczenia siły wytłaczania:
P = (Pid+Pgn+Ptk+Ptm)sinα
gdzie:
Pid – siła niezbędna do uplastycznienia materiału
Pgn – siły gięcia na promieniu matrycy
Ptk – siły tarcia na powierzchni kontaktu kołnierza z matrycą i dociskaczem
Ptm – siła tarcia na promieniu matrycy
α – kąt jaki tworzy ścianka wytłoczki z kierunkiem działania siły
$$sin\alpha = \ \frac{h}{\rho_{m} + \rho_{s} + g_{o}}$$
dla h > ρm + ρs + go sinα = 1
12 + 12 + 3 = 27 < 420 stad sinα = 1
Wartości poszczególnych sił cząstkowych oblicza się według następujących zależności:
$$R_{s} = \frac{d}{2} + g_{o} = \frac{250}{2} + 3 = 128\text{\ mm}$$
$$R_{0} = \frac{D_{0}}{2} = \ \frac{572}{2} = 286\text{\ mm}\backslash n$$
R1 = 169
R2 = 175
R3 = 180
R4 = 200
R5 = 230
R6 = 240
R7 = 250
R8 = 265
R9 = 275
R10 = 286
$$\mathbf{P}_{\mathbf{\text{id}}}\mathbf{= 2}\mathbf{\text{πC}}\mathbf{R}_{\mathbf{s}}\mathbf{g}\left\lbrack \ln\left( \frac{\mathbf{R}_{\mathbf{o}}}{\mathbf{R}} \right) \right\rbrack^{\mathbf{n}}\ln\left( \frac{\mathbf{R}}{\mathbf{R}_{\mathbf{s}}} \right)$$
gdzie:
$${g = g_{o}exp\lbrack 0,5\ln\left( \frac{R_{o}}{R} \right)\rbrack\backslash n}{g_{1} = g_{o}\exp\left\lbrack 0,5\ln\left( \frac{R_{o}}{R_{1}} \right) \right\rbrack = 3,907\text{mm}}$$
$$g_{2} = g_{o}\exp\left\lbrack 0,5\ln\left( \frac{R_{o}}{R_{2}} \right) \right\rbrack = \ 3,895\text{mm}$$
$$g_{3} = g_{o}\exp\left\lbrack 0,5\ln\left( \frac{R_{o}}{R_{3}} \right) \right\rbrack = 3,785\text{mm}$$
$$g_{4} = g_{o}\exp\left\lbrack 0,5\ln\left( \frac{R_{o}}{R_{4}} \right) \right\rbrack = \ 3,59\text{mm}$$
$$g_{5} = g_{o}\exp\left\lbrack 0,5\ln\left( \frac{R_{o}}{R_{5}} \right) \right\rbrack = 3,348\text{\ mm}$$
$$g_{6} = g_{o}\exp\left\lbrack 0,5\ln\left( \frac{R_{o}}{R_{6}} \right) \right\rbrack = 3,278\text{\ mm}$$
$$g_{7} = g_{o}\exp\left\lbrack 0,5\ln\left( \frac{R_{o}}{R_{7}} \right) \right\rbrack = 3,212\text{mm}$$
$$g_{8} = g_{o}\exp\left\lbrack 0,5\ln\left( \frac{R_{o}}{R_{8}} \right) \right\rbrack = 3,12\text{\ mm}$$
$$g_{9} = g_{o}\exp\left\lbrack 0,5\ln\left( \frac{R_{o}}{R_{9}} \right) \right\rbrack = 3,062\text{\ mm}$$
$$g_{10} = g_{o}\exp\left\lbrack 0,5\ln\left( \frac{R_{o}}{R_{10}} \right) \right\rbrack = 3,003\text{\ mm}$$
$$P_{id1} = 2\pi CR_{s}g_{1}\left\lbrack \ln\left( \frac{R_{o}}{R_{1}} \right) \right\rbrack^{n}\ln\left( \frac{R_{1}}{R_{s}} \right) = 147,4037$$
$$P_{id2} = 2\pi CR_{s}g_{2}\left\lbrack \ln\left( \frac{R_{o}}{R_{2}} \right) \right\rbrack^{n}\ln\left( \frac{R_{2}}{R_{s}} \right) = 3003,471N$$
$$P_{id3} = 2\pi CR_{s}g_{3}\left\lbrack \ln\left( \frac{R_{o}}{R_{3}} \right) \right\rbrack^{n}\ln\left( \frac{R_{3}}{R_{s}} \right) = 28207,19\text{\ N}$$
$$P_{id4} = 2\pi CR_{s}g_{4}\left\lbrack \ln\left( \frac{R_{o}}{R_{4}} \right) \right\rbrack^{n}\ln\left( \frac{R_{4}}{R_{s}} \right) = 62990,7\text{\ N}$$
$$P_{id5} = 2\pi CR_{s}g_{5}\left\lbrack \ln\left( \frac{R_{o}}{R_{5}} \right) \right\rbrack^{n}\ln\left( \frac{R_{5}}{R_{s}} \right) = 84806,7\text{\ N}$$
$$P_{id6} = 2\pi CR_{s}g_{6}\left\lbrack \ln\left( \frac{R_{o}}{R_{6}} \right) \right\rbrack^{n}\ln\left( \frac{R_{6}}{R_{s}} \right) = 85207,42\text{\ N}$$
$$P_{id7} = 2\pi CR_{s}g_{7}\left\lbrack \ln\left( \frac{R_{o}}{R_{7}} \right) \right\rbrack^{n}\ln\left( \frac{R_{7}}{R_{s}} \right) = 82196,75\text{\ N}$$
$$P_{id8} = 2\pi CR_{s}g_{8}\left\lbrack \ln\left( \frac{R_{o}}{R_{8}} \right) \right\rbrack^{n}\ln\left( \frac{R_{8}}{R_{s}} \right) = 70208,62\text{\ N}$$
$$P_{id9} = 2\pi CR_{s}g_{9}\left\lbrack \ln\left( \frac{R_{o}}{R_{9}} \right) \right\rbrack^{n}\ln\left( \frac{R_{9}}{R_{s}} \right) = 54830,23\text{\ N}$$
$$P_{id10} = 2\pi CR_{s}g_{10}\left\lbrack \ln\left( \frac{R_{o}}{R_{10}} \right) \right\rbrack^{n}\ln\left( \frac{R_{10}}{R_{s}} \right) = 13566,8\text{\ N}$$
$$\mathbf{P}_{\mathbf{\text{gn}}}\mathbf{= \pi C}\mathbf{g}^{\mathbf{2}}\frac{\mathbf{R}_{\mathbf{s}}}{\mathbf{\rho}_{\mathbf{m}}}{\mathbf{\lbrack}\frac{\mathbf{g}}{\mathbf{2}\mathbf{\rho}_{\mathbf{m}}}\mathbf{+ ln}\frac{\mathbf{R}_{\mathbf{0}}}{\mathbf{R}}\mathbf{\rbrack}}^{\mathbf{n}}$$
$$P_{gn1} = \pi C{g_{1}}^{2}\frac{R_{s}}{\rho_{m}}{\lbrack\frac{g_{1}}{2\rho_{m}} + ln\frac{R_{0}}{R_{1}}\rbrack}^{n} = \ 90435,11N$$
$$P_{gn2} = \pi C{g_{2}}^{2}\frac{R_{s}}{\rho_{m}}{\lbrack\frac{g_{2}}{2\rho_{m}} + ln\frac{R_{0}}{R_{2}}\rbrack}^{n} = 89503,71\text{\ N}$$
$$P_{gn3} = \pi C{g_{3}}^{2}\frac{R_{s}}{\rho_{m}}{\lbrack\frac{g_{3}}{2\rho_{m}} + ln\frac{R_{0}}{R_{3}}\rbrack}^{n} = 80781,98\text{\ N}$$
$$P_{gn4} = \pi C{g_{4}}^{2}\frac{R_{s}}{\rho_{m}}{\lbrack\frac{g_{4}}{2\rho_{m}} + ln\frac{R_{0}}{R_{4}}\rbrack}^{n} = 66013,36\text{\ N}$$
$$P_{gn5} = \pi C{g_{5}}^{2}\frac{R_{s}}{\rho_{m}}{\lbrack\frac{g_{5}}{2\rho_{m}} + ln\frac{R_{0}}{R_{5}}\rbrack}^{n} = 48560,75\text{\ N}$$
$$P_{gn6} = \pi C{g_{6}}^{2}\frac{R_{s}}{\rho_{m}}{\lbrack\frac{g_{6}}{2\rho_{m}} + ln\frac{R_{0}}{R_{6}}\rbrack}^{n} = 43610,27\text{\ N}$$
$$P_{gn7} = \pi C{g_{7}}^{2}\frac{R_{s}}{\rho_{m}}{\lbrack\frac{g_{7}}{2\rho_{m}} + ln\frac{R_{0}}{R_{7}}\rbrack}^{n} = 38967,63\text{\ N}$$
$$P_{gn8} = \pi C{g_{8}}^{2}\frac{R_{s}}{\rho_{m}}{\lbrack\frac{g_{8}}{2\rho_{m}} + ln\frac{R_{0}}{R_{8}}\rbrack}^{n} = 32432,7\text{\ N}$$
$$P_{gn9} = \pi C{g_{9}}^{2}\frac{R_{s}}{\rho_{m}}{\lbrack\frac{g_{9}}{2\rho_{m}} + ln\frac{R_{0}}{R_{9}}\rbrack}^{n} = 28257,98\text{\ N}$$
$$P_{gn10} = \pi C{g_{10}}^{2}\frac{R_{s}}{\rho_{m}}{\lbrack\frac{g_{10}}{2\rho_{m}} + ln\frac{R_{0}}{R_{10}}\rbrack}^{n} = 23711,92\text{\ N}$$
Ptk=Qμ1
Ptk = Qμ1 = 29812, 850, 08 = 2385, 028 N
$$\mathbf{P}_{\mathbf{\text{tm}}}\mathbf{= \lbrack exp(}\frac{\mathbf{\pi}}{\mathbf{2}}\mathbf{\mu}_{\mathbf{2}}\mathbf{- 1\rbrack(}\mathbf{P}_{\mathbf{\text{id}}}\mathbf{+}\mathbf{P}_{\mathbf{\text{tk}}}\mathbf{)}$$
μ2 = 2μ1 = 20, 08 = 0, 16
$$P_{tm1} = \left\lbrack \exp\left( \frac{\pi}{2}\mu_{2} - 1 \right) \right\rbrack\left( P_{id1} + P_{\text{tk}} \right) = 1197,825N$$
$$P_{tm2} = \left\lbrack \exp\left( \frac{\pi}{2}\mu_{2} - 1 \right) \right\rbrack\left( P_{id2} + P_{\text{tk}} \right) = 8858,228\text{\ N}$$
$$P_{tm3} = \left\lbrack \exp\left( \frac{\pi}{2}\mu_{2} - 1 \right) \right\rbrack\left( P_{id3} + P_{\text{tk}} \right) = 144469,94\text{\ N}$$
$$P_{tm4} = \left\lbrack \exp\left( \frac{\pi}{2}\mu_{2} - 1 \right) \right\rbrack\left( P_{id4} + P_{\text{tk}} \right) = 30922,32\text{\ N}$$
$$P_{tm5} = \left\lbrack \exp\left( \frac{\pi}{2}\mu_{2} - 1 \right) \right\rbrack\left( P_{id5} + P_{\text{tk}} \right) = 41241,15\text{\ N}$$
$$P_{tm6} = \left\lbrack \exp\left( \frac{\pi}{2}\mu_{2} - 1 \right) \right\rbrack\left( P_{id6} + P_{\text{tk}} \right) = 41430,7\text{\ N}$$
$$P_{tm7} = \left\lbrack \exp\left( \frac{\pi}{2}\mu_{2} - 1 \right) \right\rbrack\left( P_{id7} + P_{\text{tk}} \right) = 40006,67\text{\ N}$$
$$P_{tm8} = \left\lbrack \exp\left( \frac{\pi}{2}\mu_{2} - 1 \right) \right\rbrack\left( P_{id8} + P_{\text{tk}} \right) = 34336,36\text{\ N}$$
$$P_{\text{tm}9} = \left\lbrack \exp\left( \frac{\pi}{2}\mu_{2} - 1 \right) \right\rbrack\left( P_{\text{id}9} + P_{\text{tk}} \right) = 27062,47\text{\ N}$$
$$P_{\text{tm}10} = \left\lbrack \exp\left( \frac{\pi}{2}\mu_{2} - 1 \right) \right\rbrack\left( P_{\text{id}10} + P_{\text{tk}} \right) = 7545,119\text{\ N}$$
P=(Pid+Pgn+Ptk+Ptm)sinα
sinα=1, stąd:
P=(Pid+Pgn+Ptk+Ptm)
P1 = (Pid1+Pgn1+Ptk+Ptm1) = 94165, 37 N
P2 = (Pid2+Pgn2+Ptk+Ptm2) = 112599, 6 N
P3 = (Pid3+Pgn3+Ptk+Ptm3) = 125844, 1N
P4 = (Pid4+Pgn4+Ptk+Ptm4) = 162311 N
P5 = (Pid5+Pgn5+Ptk+Ptm5) = 176993 N
P6 = (Pid6+Pgn6+Ptk+Ptm6) = 172633, 4 N
P7 = (Pid7+Pgn7+Ptk+Ptm7) = 163556, 1 N
P8 = (Pid8+Pgn8+Ptk+Ptm8) = 139362, 7 N
P9 = (Pid9+Pgn9+Ptk+Ptm9) = 112535, 7 N
P10 = (Pid10+Pgn10+Ptk+Ptm10) = 47208, 87 N
Obliczenia siły zrywającej:
$P_{\text{zr}} = 2\pi R_{s}g_{o}\left\lbrack 1 - \frac{g_{0}}{2\rho_{s}} + \mu_{s}\frac{h}{2R_{s}} \right\rbrack R_{m} = 283075,8\ $N
Pw = klg0Rt
gdzie:
k – współczynnik wykrawania (k=1,25)
l – długość cięcia ( l = 2πR0 )
Rt – wytrzymałość na cięcie ( Rt = 0, 8Rm )
Pw = klg0Rt = 1, 252π286, 0430, 895 = 511958, 8 N