$NPV = \ - Io + \ \Sigma\frac{\text{CF}_{n}}{{(1 + r)}^{n}}$
E(NPV) = po * NPV0 + pb * NPVb + pp * NPVp
PC = Cj * Q
KC = KS + KZ
KZ = kjz * Q
ZB = PC − KC
ZN = ZB − ZB * rp
sd > twd
$P = \ \frac{D}{r}$
twd < kkw
$g = ROE*f = > f = \frac{Z_{z}}{Z_{n}}$
$P = \frac{D(1 + g)}{r - g}$
$P = \frac{D(1 + g)}{r - g} + X$
w2 < w1
$P = \ \frac{D}{{r - w}_{1}}*\left\lbrack 1 - \left( \frac{1 + w_{1}}{1 + r} \right)^{k} \right\rbrack^{} + \frac{D}{{r - w}_{2}}*\left( \frac{1 + w_{1}}{1 + r} \right)^{k - 1}*\ \frac{1 + w_{2}}{1 + r}$
$K_{u} = \frac{D_{u}}{P_{u}}*100\%$
$K_{u} = \ \frac{D_{u}}{P_{\text{su}} + \ F_{\text{su}}}*100\%$
$K_{z} = \left( \frac{D_{z}}{P_{z}} + g \right)*100\%$
$K_{z} = \left( \frac{D_{z}}{P_{\text{sz}} + \ F_{\text{sz}}} + g \right)*100\%$
Kk = ik * (1−T)
$V_{o} = P_{o}*\left( 1 - \frac{m}{12}*\frac{i_{o}}{100} \right)$
$K_{o} = \frac{O}{\text{Vo}}*\left( 1 - T \right)*100\%$
Ks = Ku * Uu + Kz * Uz + Kk * Uk + Ko * Uo
$PI = \ \frac{\sum_{}^{}\frac{NCF\ " + "}{{(1 + r)}^{t}}}{|NCF\mathrm{" - "|}}$
$DPP = \ \frac{\text{PVI}}{\frac{NCF\ " + "}{{(1 + r)}^{t}}}$
$\text{DPP}_{o} = \ \frac{\text{PVI}}{\sum_{}^{}\frac{NCF\ " + "}{{(1 + r)}^{t}}}*n$