Akademia Górniczo-Hutnicza
w Krakowie
Modelowanie w Projektowaniu Maszyn
Projekt
Stół wibracyjny
Hyrchel Marcin
Mazan Maciej
Nowak Patryk
Padło Maciej
Szlachta Grzegorz
Gr. K2
Dane
f = 0, 23 [m] |
N = 1, 5 [kW] |
---|---|
e = 0, 025 [m] |
nN = 1415 [obr] |
b = 1, 5 [m] |
n0 = 1500 [obr] |
|
przeciazalnosc p = 3 |
M = 112 [kg] |
n = 2 lb. okresow drgan |
ml = 15, 2 [kg] |
T = 0, 12 [s] okres drgan |
mw = 7 [kg] |
A1 = 7, 6 [mm] |
J = 22, 89 [kg * m2] |
A3 = 1, 2 [mm] |
Jl = 0, 3 [kg * m2] |
|
JwA = 0, 0285 [kg * m2] |
|
Jw = JwA + e2 * mw = 0, 033[kg * m2] |
|
Współrzędne uogólnione
Przyjęte współrzędne uogólnione: {x,y,φ,β,α} |
---|
Założenia: |
|
Współrzędne wierzchołków
|
|
---|
|
|
---|
Równania więzów
$$\left\{ \begin{matrix}
x_{w} = ecos \propto + fcos\beta + x + lcos\varphi \\
y_{w} = esin\alpha + fsin\beta + y + lsin\varphi \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
x_{w} = ecos\alpha + f + x + l \\
y_{w} = esin\alpha + f\beta + y + l\varphi \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
{\dot{x}}_{w} = - e\dot{\alpha}sin\alpha + \dot{x} \\
{\dot{y}}_{w} = e\dot{\alpha}cos\alpha + f\dot{\beta} + \dot{y} + l\dot{\varphi} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
x_{l} = fcos\beta + x + lcos\varphi \\
y_{l} = fsin\beta + y + lsin\varphi \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
x_{l} = f + x + l \\
y_{l} = f\beta + y + l\varphi \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
{\dot{x}}_{l} = \dot{x} \\
{\dot{y}}_{l} = f\dot{\beta} + \dot{y} + l\dot{\varphi} \\
\end{matrix} \right.\ $$
Obliczanie
Moment elektryczny silnika
$$M_{n} = 9550*\frac{N}{n_{N}} = 10,12\ \text{Nm}$$
$$\omega_{N} = \frac{\pi n_{N}}{30} = 148,2\ \frac{1}{s}$$
Mut = p * Mn = 3 * 10 = 30, 36 Nm
$$\omega_{s} = \frac{\pi n_{s}}{30} = 157,1\ \frac{\text{rad}}{s}$$
$$s_{N} = \frac{\omega_{s} - \omega_{N}}{\omega_{s}} = \frac{157,1 - 148,2}{157,1} = 0,057$$
$$s_{\text{ut}} = s_{N}\left( p + \sqrt{p^{2} - 1} \right) = 0,057*\left( 3 + \sqrt{3^{2} - 1} \right) = 0,33$$
$$\omega_{\text{ut}} = \omega_{s}\left( 1 - s_{\text{ut}} \right) = 105,3\frac{\text{rad}}{s}$$
$$M_{\text{el}} = \frac{2M_{\text{ut}}(\omega_{s} - \omega_{\text{ut}})(\omega_{s} - \omega_{\alpha})}{\left( \omega_{s} - \omega_{\text{ut}} \right)^{2} + {(\omega_{s} - \omega_{\alpha})}^{2}} = \frac{2*30,36*(157,1 - 105,3)(157,1 - \omega_{\alpha})}{{(157,1 - 105,3)}^{2} + {(157,1 - \omega_{\alpha})}^{2}} = \frac{3145,3*(157,1 - \omega_{\alpha})}{2683,2*{(157,1 - \omega_{\alpha})}^{2}}$$
$$\omega_{\alpha} = \dot{\alpha}$$
Współczynnik tłumienia
$$b = \frac{2\text{mδ}}{\text{nT}}\ \left\lbrack \frac{\text{kg}}{s} \right\rbrack$$
Dla 4 tłumików
$$m = \frac{M + m_{l} + m_{w}}{4} = \frac{112 + 15,2 + 7}{4} = 33,55\ \lbrack\text{kg}\rbrack$$
$$\delta = \ln\left\lbrack \frac{x(t_{0})}{x(t_{0} + \text{nT})} \right\rbrack = \ln\frac{7}{1,2} = 1,7636$$
$$b = \frac{2\text{mδ}}{\text{nT}} = \frac{2*33,55*1,7636}{2*0,12} = 493,1\ \left\lbrack \frac{\text{kg}}{s} \right\rbrack$$
Współczynnik sztywności sprężyny
$$\omega_{tl} = \frac{2\pi}{T} = \frac{\sqrt{4\text{km} - b^{2}}}{2m}$$
$$k = \frac{4m\pi^{2}}{T^{2}} + \frac{b^{2}}{4m} = \frac{4*33,55*{3,14}^{2}}{{0,12}^{2}} + \frac{{493,1}^{2}}{4*33,55} = 93697\ \frac{N}{m}$$
Energia kinetyczna
$$E_{k} = \frac{1}{2}*M*{\dot{x}}^{2} + \frac{1}{2}*M*{\dot{y}}^{2} + \frac{1}{2}*J*{\dot{\varphi}}^{2} + \frac{1}{2}m_{l}\ {\dot{x}}^{2} + \frac{1}{2}m_{l}\left( \dot{y} + f\dot{\beta} + l\dot{\varphi} \right)^{2} + \frac{1}{2}J_{l}{\dot{\beta}}^{2} + \frac{1}{2}m_{w}\left( \dot{x} - e\dot{\alpha}\text{sinα} \right)^{2} + \frac{1}{2}m_{w}\left( \dot{y} + l\dot{\varphi} + f\dot{\beta} + e\dot{\alpha}\text{cosα} \right)^{2} + \frac{1}{2}J_{w}{\dot{\alpha}}^{2}$$
Energia potencjalna
$$E_{p} = \frac{1}{2}*k\left( 4x^{2} + 4l^{2}\varphi^{2} \right) + \frac{1}{2}*k\left( 4y^{2} + {4h}^{2}\varphi^{2} \right) = 2kx^{2} + 2kl^{2}\varphi^{2} + 2ky^{2} + {2kh}^{2}\alpha^{2}$$
Potencjał Lagrange’a
L = Ek − Ep
$$L = \frac{1}{2}M{\dot{x}}^{2} + \frac{1}{2}M{\dot{y}}^{2} + \frac{1}{2}J{\dot{\varphi}}^{2} + \frac{1}{2}m_{l}\ {\dot{x}}^{2} + \frac{1}{2}m_{l}\left( \dot{y} + f\dot{\beta} + l\dot{\varphi} \right)^{2} + \frac{1}{2}J_{l}{\dot{\beta}}^{2} + \frac{1}{2}m_{w}\left( \dot{x} - e\dot{\alpha}\text{sinα} \right)^{2} + \frac{1}{2}m_{w}\left( \dot{y} + l\dot{\varphi} + f\dot{\beta} + e\dot{\alpha}\text{cosα} \right)^{2} + \frac{1}{2}J_{w}{\dot{\alpha}}^{2} - (2kx^{2} + 2kl^{2}\varphi^{2} + 2ky^{2} + {2kh}^{2}\alpha^{2})$$
Moc strat (dyssypacja energii)
$$N = b{\dot{x}}^{2} + b{\dot{y}}^{2} = b\left( 4{\dot{x}}^{2} + {4l}^{2}{\dot{\varphi}}^{2} \right) + b\left( 4{\dot{y}}^{2} + {4h}^{2}{\dot{\varphi}}^{2} \right) = 4b{\dot{x}}^{2} + 4b{\dot{y}}^{2} + {\dot{\varphi}}^{2}\left( {4bl}^{2} + {4bh}^{2} \right)$$
Równania różniczkowe dla współrzędnych uogólnionych
dla x |
---|
$$Q_{x} = \frac{d}{\text{dt}}\frac{\partial L}{\partial\dot{x}} - \frac{\partial L}{\partial x} + \frac{1}{2}\frac{\partial N}{\partial\dot{x}} = 0$$
$$\frac{\partial L}{\partial\dot{x}} = M\dot{x} + m_{l}\ \dot{x} + m_{w}\left( \dot{x} - e\dot{\alpha}\text{sinα} \right)\backslash n$$
$$\frac{\partial L}{\partial x} = - 4\text{kx}$$
$$\frac{\partial N}{\partial\dot{x}} = 8b\dot{x}$$
$$Q_{x} = \ddot{x}\left( M + m_{l} + m_{w} \right) + m_{w}( - e\ddot{\alpha}sin\alpha - e{\dot{\alpha}}^{2}cos\alpha) + 4\text{kx} + 4b\dot{x} = 0$$
dla y |
---|
$$Q_{y} = \frac{d}{\text{dt}}\frac{\partial L}{\partial\dot{y}} - \frac{\partial L}{\partial y} + \frac{1}{2}\frac{\partial N}{\partial\dot{y}}$$
$$\frac{\partial L}{\partial\dot{y}} = M\dot{y} + m_{l}\left( \dot{y} + f\dot{\beta} + l\dot{\varphi} \right) + m_{w}(\dot{y} + f\dot{\beta} + l\dot{\varphi} + e\dot{\alpha}cos\alpha)$$
$$\frac{d}{\text{dt}}\frac{\partial L}{\partial\dot{y}} = M\ddot{y} + m_{l}\left( \ddot{y} + f\ddot{\beta} + l\ddot{\varphi} \right) + m_{w}\left( \ddot{y} + f\ddot{\beta} + l\ddot{\varphi} + e\ddot{\alpha}cos\alpha - e{\dot{\alpha}}^{2}\text{sinα} \right) = \ddot{y}\left( M + m_{l} + m_{w} \right) + \ddot{\varphi}l\left( m_{l} + m_{w} \right) + \ddot{\beta}f\left( m_{l} + m_{w} \right) + m_{w}(e\ddot{\alpha}cos\alpha - e{\dot{\alpha}}^{2}sin\alpha)$$
$$\frac{\partial L}{\partial y} = - 4\text{ky}$$
$$\frac{\partial N}{\partial\dot{y}} = 8b\dot{y}$$
$$Q_{y} = \ddot{y}\left( M + m_{l} + m_{w} \right) + \left( \ddot{\varphi}l + \ddot{\beta}f \right)\left( m_{l} + m_{w} \right) + m_{w}\left( e\ddot{\alpha}cos\alpha - e{\dot{\alpha}}^{2}\text{sinα} \right) + 4ky + 4b\dot{y}$$
dla φ |
---|
$$Q_{\varphi} = \frac{d}{\text{dt}}\frac{\partial L}{\partial\dot{\varphi}} - \frac{\partial L}{\partial\varphi} + \frac{1}{2}\frac{\partial N}{\partial\dot{\varphi}}$$
$$\frac{\partial L}{\partial\dot{\varphi}} = J\dot{\varphi} + m_{l}l\left( \dot{y} + f\dot{\beta} + l\dot{\varphi} \right) + m_{w}l(\dot{y} + f\dot{\beta} + l\dot{\varphi} + e\dot{\alpha}cos\alpha)$$
$$\frac{d}{\text{dt}}\frac{\partial L}{\partial\dot{\varphi}} = J\ddot{\varphi} + m_{l}l\left( \ddot{y} + f\ddot{\beta} + l\ddot{\varphi} \right) + m_{w}l(\ddot{y} + f\ddot{\beta} + l\ddot{\varphi} + e\ddot{\alpha}cos\alpha - e{\dot{\alpha}}^{2}sin\alpha)$$
$$\frac{\partial L}{\partial\varphi} = - 4kh^{2}\varphi - 4kl^{2}\varphi$$
$$\frac{\partial N}{\partial\dot{\varphi}} = 8bh^{2}\dot{\varphi} + 8bl^{2}\dot{\varphi}$$
$$Q_{\varphi} = \ddot{\varphi}\ \left( J + m_{l}l^{2} + m_{w}l^{2} \right) + \left( \ddot{y} + f\ddot{\beta} \right)\left( m_{l}l + m_{w}l \right) + m_{w}l\left( e\ddot{\alpha}cos\alpha - e{\dot{\alpha}}^{2}\text{sinα} \right) + 4kh^{2}\varphi - 4kl^{2}\varphi + 4bh^{2}\dot{\varphi} + 4bl^{2}\dot{\varphi}$$
dla β |
---|
$$Q_{\beta} = \frac{d}{\text{dt}}\frac{\partial L}{\partial\dot{\beta}} - \frac{\partial L}{\partial\beta} + \frac{1}{2}\frac{\partial N}{\partial\dot{\beta}}$$
$$\frac{\partial L}{\partial\dot{\beta}} = m_{l}f\left( \dot{y} + f\dot{\beta} + l\dot{\varphi} \right) + J_{l}\dot{\beta} + m_{w}f(\dot{y} + f\dot{\beta} + l\dot{\varphi} + e\dot{\alpha}cos\alpha)$$
$$\frac{d}{\text{dt}}\frac{\partial L}{\partial\dot{\beta}} = \ddot{\beta}\ \left( J_{l} + m_{l}f^{2} + m_{w}f^{2} \right) + \left( \ddot{y} + l\ddot{\varphi} \right)\left( m_{l}f + m_{w}f \right) + m_{w}f\left( e\ddot{\alpha}cos\alpha - e{\dot{\alpha}}^{2}\text{sinα} \right)$$
$$\frac{\partial L}{\partial\beta} = 0$$
$$\frac{\partial N}{\partial\dot{\beta}} = 0$$
$$Q_{\beta} = \ddot{\beta}\ \left( J_{l} + m_{l}f^{2} + m_{w}f^{2} \right) + \left( \ddot{y} + l\ddot{\varphi} \right)\left( m_{l}f + m_{w}f \right) + m_{w}f\left( e\ddot{\alpha}cos\alpha - e{\dot{\alpha}}^{2}\text{sinα} \right) = 0$$
dla α |
---|
$$Q_{\alpha} = \frac{d}{\text{dt}}\frac{\partial L}{\partial\dot{\alpha}} - \frac{\partial L}{\partial\alpha} + \frac{1}{2}\frac{\partial N}{\partial\dot{\alpha}}$$
$$\frac{\partial L}{\partial\dot{\alpha}} = - m_{w}\text{esin}\alpha\left( \dot{x} - e\dot{\alpha}\sin\alpha \right){+ m}_{w}\text{ecos}\alpha\left( \dot{y} + f\dot{\beta} + l\dot{\varphi} + e\dot{\alpha}\text{cosα} \right) + J_{w}\dot{\alpha} = m_{w}e^{2}\dot{\dot{\alpha}(\sin^{2}\alpha + \cos^{2}\alpha)} + J_{w}\dot{\alpha} - m_{w}\text{esinα}\dot{x} + m_{w}\text{ecos}\alpha\left( \dot{y} + f\dot{\beta} + l\dot{\varphi} \right) = \dot{\alpha}(m_{w}e^{2} + J_{w}) - m_{w}e\dot{x}\text{sinα} + m_{w}\text{ecos}\alpha\left( \dot{y} + f\dot{\beta} + l\dot{\varphi} \right)$$
$$\frac{d}{\text{dt}}\frac{\partial L}{\partial\dot{\alpha}} = \ddot{\alpha}(m_{w}e^{2} + J_{w}) - m_{w}e(\ddot{x}sin\alpha + \dot{x}\dot{\alpha}\cos\alpha - \ddot{y}\cos\alpha + \dot{y}\dot{\alpha}cos\alpha - f\ddot{\beta}\cos\alpha + f\dot{\beta}\dot{\alpha}\sin\alpha - l\ddot{\varphi}cos\alpha + l\dot{\varphi}\dot{\alpha}sin\alpha)$$
$$\frac{\partial L}{\partial\alpha} = m_{w}e\dot{\alpha}\cos\alpha\left( \dot{x} - e\dot{\alpha}\sin\alpha \right){- m}_{w}e\dot{\alpha}\sin\alpha\left( \dot{y} + f\dot{\beta} + l\dot{\varphi} + e\dot{\alpha}\text{cosα} \right) = m_{w}e\dot{\alpha}(\dot{x}\cos\alpha - \dot{y}\sin\alpha - f\dot{\beta}\sin\alpha - l\dot{\varphi}\sin\alpha)$$
$$\frac{\partial N}{\partial\dot{\varphi}} = 0$$
$$Q_{\alpha} = \ddot{\alpha}(m_{w}e^{2} + J_{w}) - m_{w}e(\ddot{x}sin\alpha + \dot{x}\dot{\alpha}\cos\alpha - \ddot{y}\cos\alpha + \dot{y}\dot{\alpha}cos\alpha - f\ddot{\beta}\cos\alpha + f\dot{\beta}\dot{\alpha}\sin\alpha - l\ddot{\varphi}cos\alpha + l\dot{\varphi}\dot{\alpha}sin\alpha) - m_{w}e\dot{\alpha}(\dot{x}\cos\alpha - \dot{y}\sin\alpha - f\dot{\beta}\sin\alpha - l\dot{\varphi}\sin\alpha) = M_{\text{el}}$$
Macierz |
---|