kopij nasz

Akademia Górniczo-Hutnicza

w Krakowie

Modelowanie w Projektowaniu Maszyn

Projekt

Stół wibracyjny

Hyrchel Marcin

Mazan Maciej

Nowak Patryk

Padło Maciej

Szlachta Grzegorz

Gr. K2

  1. Dane


f = 0, 23 [m]

N = 1, 5 [kW]

e = 0, 025 [m]

nN = 1415 [obr]

b = 1, 5 [m]

n0 = 1500 [obr]


a = 0, 45[m]


$$l = \frac{b}{2} = 0,75\left\lbrack m \right\rbrack$$


$$h = \frac{a}{2} = 0,225\left\lbrack m \right\rbrack$$


przeciazalnosc p = 3

M = 112 [kg]

n = 2 lb. okresow drgan

ml = 15, 2 [kg]

T = 0, 12 [s] okres drgan

mw = 7 [kg]

A1 = 7, 6 [mm]

J = 22, 89 [kg * m2]

A3 = 1, 2 [mm]

Jl = 0, 3 [kg * m2]

JwA = 0, 0285 [kg * m2]

Jw = JwA + e2 * mw  = 0, 033[kg * m2]

  1. Współrzędne uogólnione

Przyjęte współrzędne uogólnione:

{x,y,φ,β,α}

Założenia:


sinβ = β


sinφ = φ


cosβ = 1


cosφ = 1

  1. Współrzędne wierzchołków


xA = x − lsinφ


xB = x − lsinφ


xC = x + lsinφ


xD = x + lsinφ


yA = y + hsinφ


yB = y − hsinφ


yC = y − hsinφ


yD = y + hsinφ


xA = x − lφ


xB = x − lφ


xC = x + lφ


xD = x + lφ


yA = y + hφ


yB = y − hφ


yC = y − hφ


yD = y + hφ

  1. Równania więzów


$$\left\{ \begin{matrix} x_{w} = ecos \propto + fcos\beta + x + lcos\varphi \\ y_{w} = esin\alpha + fsin\beta + y + lsin\varphi \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} x_{w} = ecos\alpha + f + x + l \\ y_{w} = esin\alpha + f\beta + y + l\varphi \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} {\dot{x}}_{w} = - e\dot{\alpha}sin\alpha + \dot{x} \\ {\dot{y}}_{w} = e\dot{\alpha}cos\alpha + f\dot{\beta} + \dot{y} + l\dot{\varphi} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} x_{l} = fcos\beta + x + lcos\varphi \\ y_{l} = fsin\beta + y + lsin\varphi \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} x_{l} = f + x + l \\ y_{l} = f\beta + y + l\varphi \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} {\dot{x}}_{l} = \dot{x} \\ {\dot{y}}_{l} = f\dot{\beta} + \dot{y} + l\dot{\varphi} \\ \end{matrix} \right.\ $$

  1. Obliczanie


$$M_{n} = 9550*\frac{N}{n_{N}} = 10,12\ \text{Nm}$$


$$\omega_{N} = \frac{\pi n_{N}}{30} = 148,2\ \frac{1}{s}$$


Mut = p * Mn = 3 * 10 = 30, 36 Nm


$$\omega_{s} = \frac{\pi n_{s}}{30} = 157,1\ \frac{\text{rad}}{s}$$


$$s_{N} = \frac{\omega_{s} - \omega_{N}}{\omega_{s}} = \frac{157,1 - 148,2}{157,1} = 0,057$$


$$s_{\text{ut}} = s_{N}\left( p + \sqrt{p^{2} - 1} \right) = 0,057*\left( 3 + \sqrt{3^{2} - 1} \right) = 0,33$$


$$\omega_{\text{ut}} = \omega_{s}\left( 1 - s_{\text{ut}} \right) = 105,3\frac{\text{rad}}{s}$$


$$M_{\text{el}} = \frac{2M_{\text{ut}}(\omega_{s} - \omega_{\text{ut}})(\omega_{s} - \omega_{\alpha})}{\left( \omega_{s} - \omega_{\text{ut}} \right)^{2} + {(\omega_{s} - \omega_{\alpha})}^{2}} = \frac{2*30,36*(157,1 - 105,3)(157,1 - \omega_{\alpha})}{{(157,1 - 105,3)}^{2} + {(157,1 - \omega_{\alpha})}^{2}} = \frac{3145,3*(157,1 - \omega_{\alpha})}{2683,2*{(157,1 - \omega_{\alpha})}^{2}}$$


$$\omega_{\alpha} = \dot{\alpha}$$


$$b = \frac{2\text{mδ}}{\text{nT}}\ \left\lbrack \frac{\text{kg}}{s} \right\rbrack$$

Dla 4 tłumików


$$m = \frac{M + m_{l} + m_{w}}{4} = \frac{112 + 15,2 + 7}{4} = 33,55\ \lbrack\text{kg}\rbrack$$


$$\delta = \ln\left\lbrack \frac{x(t_{0})}{x(t_{0} + \text{nT})} \right\rbrack = \ln\frac{7}{1,2} = 1,7636$$


$$b = \frac{2\text{mδ}}{\text{nT}} = \frac{2*33,55*1,7636}{2*0,12} = 493,1\ \left\lbrack \frac{\text{kg}}{s} \right\rbrack$$


$$\omega_{tl} = \frac{2\pi}{T} = \frac{\sqrt{4\text{km} - b^{2}}}{2m}$$


$$k = \frac{4m\pi^{2}}{T^{2}} + \frac{b^{2}}{4m} = \frac{4*33,55*{3,14}^{2}}{{0,12}^{2}} + \frac{{493,1}^{2}}{4*33,55} = 93697\ \frac{N}{m}$$

  1. Energia kinetyczna


$$E_{k} = \frac{1}{2}*M*{\dot{x}}^{2} + \frac{1}{2}*M*{\dot{y}}^{2} + \frac{1}{2}*J*{\dot{\varphi}}^{2} + \frac{1}{2}m_{l}\ {\dot{x}}^{2} + \frac{1}{2}m_{l}\left( \dot{y} + f\dot{\beta} + l\dot{\varphi} \right)^{2} + \frac{1}{2}J_{l}{\dot{\beta}}^{2} + \frac{1}{2}m_{w}\left( \dot{x} - e\dot{\alpha}\text{sinα} \right)^{2} + \frac{1}{2}m_{w}\left( \dot{y} + l\dot{\varphi} + f\dot{\beta} + e\dot{\alpha}\text{cosα} \right)^{2} + \frac{1}{2}J_{w}{\dot{\alpha}}^{2}$$

  1. Energia potencjalna


$$E_{p} = \frac{1}{2}*k\left( 4x^{2} + 4l^{2}\varphi^{2} \right) + \frac{1}{2}*k\left( 4y^{2} + {4h}^{2}\varphi^{2} \right) = 2kx^{2} + 2kl^{2}\varphi^{2} + 2ky^{2} + {2kh}^{2}\alpha^{2}$$

  1. Potencjał Lagrange’a


L = Ek − Ep


$$L = \frac{1}{2}M{\dot{x}}^{2} + \frac{1}{2}M{\dot{y}}^{2} + \frac{1}{2}J{\dot{\varphi}}^{2} + \frac{1}{2}m_{l}\ {\dot{x}}^{2} + \frac{1}{2}m_{l}\left( \dot{y} + f\dot{\beta} + l\dot{\varphi} \right)^{2} + \frac{1}{2}J_{l}{\dot{\beta}}^{2} + \frac{1}{2}m_{w}\left( \dot{x} - e\dot{\alpha}\text{sinα} \right)^{2} + \frac{1}{2}m_{w}\left( \dot{y} + l\dot{\varphi} + f\dot{\beta} + e\dot{\alpha}\text{cosα} \right)^{2} + \frac{1}{2}J_{w}{\dot{\alpha}}^{2} - (2kx^{2} + 2kl^{2}\varphi^{2} + 2ky^{2} + {2kh}^{2}\alpha^{2})$$

  1. Moc strat (dyssypacja energii)


$$N = b{\dot{x}}^{2} + b{\dot{y}}^{2} = b\left( 4{\dot{x}}^{2} + {4l}^{2}{\dot{\varphi}}^{2} \right) + b\left( 4{\dot{y}}^{2} + {4h}^{2}{\dot{\varphi}}^{2} \right) = 4b{\dot{x}}^{2} + 4b{\dot{y}}^{2} + {\dot{\varphi}}^{2}\left( {4bl}^{2} + {4bh}^{2} \right)$$

  1. Równania różniczkowe dla współrzędnych uogólnionych

dla x


$$Q_{x} = \frac{d}{\text{dt}}\frac{\partial L}{\partial\dot{x}} - \frac{\partial L}{\partial x} + \frac{1}{2}\frac{\partial N}{\partial\dot{x}} = 0$$


$$\frac{\partial L}{\partial\dot{x}} = M\dot{x} + m_{l}\ \dot{x} + m_{w}\left( \dot{x} - e\dot{\alpha}\text{sinα} \right)\backslash n$$


$$\frac{\partial L}{\partial x} = - 4\text{kx}$$


$$\frac{\partial N}{\partial\dot{x}} = 8b\dot{x}$$


$$Q_{x} = \ddot{x}\left( M + m_{l} + m_{w} \right) + m_{w}( - e\ddot{\alpha}sin\alpha - e{\dot{\alpha}}^{2}cos\alpha) + 4\text{kx} + 4b\dot{x} = 0$$

dla y


$$Q_{y} = \frac{d}{\text{dt}}\frac{\partial L}{\partial\dot{y}} - \frac{\partial L}{\partial y} + \frac{1}{2}\frac{\partial N}{\partial\dot{y}}$$


$$\frac{\partial L}{\partial\dot{y}} = M\dot{y} + m_{l}\left( \dot{y} + f\dot{\beta} + l\dot{\varphi} \right) + m_{w}(\dot{y} + f\dot{\beta} + l\dot{\varphi} + e\dot{\alpha}cos\alpha)$$


$$\frac{d}{\text{dt}}\frac{\partial L}{\partial\dot{y}} = M\ddot{y} + m_{l}\left( \ddot{y} + f\ddot{\beta} + l\ddot{\varphi} \right) + m_{w}\left( \ddot{y} + f\ddot{\beta} + l\ddot{\varphi} + e\ddot{\alpha}cos\alpha - e{\dot{\alpha}}^{2}\text{sinα} \right) = \ddot{y}\left( M + m_{l} + m_{w} \right) + \ddot{\varphi}l\left( m_{l} + m_{w} \right) + \ddot{\beta}f\left( m_{l} + m_{w} \right) + m_{w}(e\ddot{\alpha}cos\alpha - e{\dot{\alpha}}^{2}sin\alpha)$$


$$\frac{\partial L}{\partial y} = - 4\text{ky}$$


$$\frac{\partial N}{\partial\dot{y}} = 8b\dot{y}$$


$$Q_{y} = \ddot{y}\left( M + m_{l} + m_{w} \right) + \left( \ddot{\varphi}l + \ddot{\beta}f \right)\left( m_{l} + m_{w} \right) + m_{w}\left( e\ddot{\alpha}cos\alpha - e{\dot{\alpha}}^{2}\text{sinα} \right) + 4ky + 4b\dot{y}$$

dla φ


$$Q_{\varphi} = \frac{d}{\text{dt}}\frac{\partial L}{\partial\dot{\varphi}} - \frac{\partial L}{\partial\varphi} + \frac{1}{2}\frac{\partial N}{\partial\dot{\varphi}}$$


$$\frac{\partial L}{\partial\dot{\varphi}} = J\dot{\varphi} + m_{l}l\left( \dot{y} + f\dot{\beta} + l\dot{\varphi} \right) + m_{w}l(\dot{y} + f\dot{\beta} + l\dot{\varphi} + e\dot{\alpha}cos\alpha)$$


$$\frac{d}{\text{dt}}\frac{\partial L}{\partial\dot{\varphi}} = J\ddot{\varphi} + m_{l}l\left( \ddot{y} + f\ddot{\beta} + l\ddot{\varphi} \right) + m_{w}l(\ddot{y} + f\ddot{\beta} + l\ddot{\varphi} + e\ddot{\alpha}cos\alpha - e{\dot{\alpha}}^{2}sin\alpha)$$


$$\frac{\partial L}{\partial\varphi} = - 4kh^{2}\varphi - 4kl^{2}\varphi$$


$$\frac{\partial N}{\partial\dot{\varphi}} = 8bh^{2}\dot{\varphi} + 8bl^{2}\dot{\varphi}$$


$$Q_{\varphi} = \ddot{\varphi}\ \left( J + m_{l}l^{2} + m_{w}l^{2} \right) + \left( \ddot{y} + f\ddot{\beta} \right)\left( m_{l}l + m_{w}l \right) + m_{w}l\left( e\ddot{\alpha}cos\alpha - e{\dot{\alpha}}^{2}\text{sinα} \right) + 4kh^{2}\varphi - 4kl^{2}\varphi + 4bh^{2}\dot{\varphi} + 4bl^{2}\dot{\varphi}$$

dla β


$$Q_{\beta} = \frac{d}{\text{dt}}\frac{\partial L}{\partial\dot{\beta}} - \frac{\partial L}{\partial\beta} + \frac{1}{2}\frac{\partial N}{\partial\dot{\beta}}$$


$$\frac{\partial L}{\partial\dot{\beta}} = m_{l}f\left( \dot{y} + f\dot{\beta} + l\dot{\varphi} \right) + J_{l}\dot{\beta} + m_{w}f(\dot{y} + f\dot{\beta} + l\dot{\varphi} + e\dot{\alpha}cos\alpha)$$


$$\frac{d}{\text{dt}}\frac{\partial L}{\partial\dot{\beta}} = \ddot{\beta}\ \left( J_{l} + m_{l}f^{2} + m_{w}f^{2} \right) + \left( \ddot{y} + l\ddot{\varphi} \right)\left( m_{l}f + m_{w}f \right) + m_{w}f\left( e\ddot{\alpha}cos\alpha - e{\dot{\alpha}}^{2}\text{sinα} \right)$$


$$\frac{\partial L}{\partial\beta} = 0$$


$$\frac{\partial N}{\partial\dot{\beta}} = 0$$


$$Q_{\beta} = \ddot{\beta}\ \left( J_{l} + m_{l}f^{2} + m_{w}f^{2} \right) + \left( \ddot{y} + l\ddot{\varphi} \right)\left( m_{l}f + m_{w}f \right) + m_{w}f\left( e\ddot{\alpha}cos\alpha - e{\dot{\alpha}}^{2}\text{sinα} \right) = 0$$

dla α


$$Q_{\alpha} = \frac{d}{\text{dt}}\frac{\partial L}{\partial\dot{\alpha}} - \frac{\partial L}{\partial\alpha} + \frac{1}{2}\frac{\partial N}{\partial\dot{\alpha}}$$


$$\frac{\partial L}{\partial\dot{\alpha}} = - m_{w}\text{esin}\alpha\left( \dot{x} - e\dot{\alpha}\sin\alpha \right){+ m}_{w}\text{ecos}\alpha\left( \dot{y} + f\dot{\beta} + l\dot{\varphi} + e\dot{\alpha}\text{cosα} \right) + J_{w}\dot{\alpha} = m_{w}e^{2}\dot{\dot{\alpha}(\sin^{2}\alpha + \cos^{2}\alpha)} + J_{w}\dot{\alpha} - m_{w}\text{esinα}\dot{x} + m_{w}\text{ecos}\alpha\left( \dot{y} + f\dot{\beta} + l\dot{\varphi} \right) = \dot{\alpha}(m_{w}e^{2} + J_{w}) - m_{w}e\dot{x}\text{sinα} + m_{w}\text{ecos}\alpha\left( \dot{y} + f\dot{\beta} + l\dot{\varphi} \right)$$


$$\frac{d}{\text{dt}}\frac{\partial L}{\partial\dot{\alpha}} = \ddot{\alpha}(m_{w}e^{2} + J_{w}) - m_{w}e(\ddot{x}sin\alpha + \dot{x}\dot{\alpha}\cos\alpha - \ddot{y}\cos\alpha + \dot{y}\dot{\alpha}cos\alpha - f\ddot{\beta}\cos\alpha + f\dot{\beta}\dot{\alpha}\sin\alpha - l\ddot{\varphi}cos\alpha + l\dot{\varphi}\dot{\alpha}sin\alpha)$$


$$\frac{\partial L}{\partial\alpha} = m_{w}e\dot{\alpha}\cos\alpha\left( \dot{x} - e\dot{\alpha}\sin\alpha \right){- m}_{w}e\dot{\alpha}\sin\alpha\left( \dot{y} + f\dot{\beta} + l\dot{\varphi} + e\dot{\alpha}\text{cosα} \right) = m_{w}e\dot{\alpha}(\dot{x}\cos\alpha - \dot{y}\sin\alpha - f\dot{\beta}\sin\alpha - l\dot{\varphi}\sin\alpha)$$


$$\frac{\partial N}{\partial\dot{\varphi}} = 0$$


$$Q_{\alpha} = \ddot{\alpha}(m_{w}e^{2} + J_{w}) - m_{w}e(\ddot{x}sin\alpha + \dot{x}\dot{\alpha}\cos\alpha - \ddot{y}\cos\alpha + \dot{y}\dot{\alpha}cos\alpha - f\ddot{\beta}\cos\alpha + f\dot{\beta}\dot{\alpha}\sin\alpha - l\ddot{\varphi}cos\alpha + l\dot{\varphi}\dot{\alpha}sin\alpha) - m_{w}e\dot{\alpha}(\dot{x}\cos\alpha - \dot{y}\sin\alpha - f\dot{\beta}\sin\alpha - l\dot{\varphi}\sin\alpha) = M_{\text{el}}$$

Macierz

Wyszukiwarka

Podobne podstrony:
Nasz system ostrzegania(2)
Koalicja brnie w kłamstwo smoleńskie Nasz Dziennik
Co Krasnokutski przekazał na pokład tupolewa Nasz Dziennik
6 ODCHUDZANIE A NASZ ORGANIZM, Mity i fakty na temat odchudzania
Ojcze Nasz H
Chleb nasz powszedni, różności, dietetyka, ciekawostki, diety, normy
Nasz babski stres, STRES Jak radzić sobie ze stresem
Zniknęła próbka ciała prezydenta Błędy Rosjan przy identyfikacji Nasz Dziennik
ojcze nasz
Hormony, nasz wspólny temat
Nasz Pasterz odszedł (K Burandt OP)
O Panie nasz
Nasz uroczy aniolek Wychowanie grzecznego dziecka aniole
Ojcze nasz
Nasz Doktor Faustus
Zniknęła próbka ciała prezydenta Błędy Rosjan przy identyfikacji Nasz Dziennik
Ojcze Nasz
OTO, CO POZYTYWNIE WPŁYWA NA NASZ MÓZG

więcej podobnych podstron