stat wzory z opisem 2 str


$$As = \frac{\overset{\overline{}}{x} - Mo}{S}$$


$$As = \frac{\left( Q_{3} - Q_{2} \right) - \left( Q_{2} - Q_{1} \right)}{Q_{3} - Q_{1}}$$

moment stand. 3 rzędu $As = \frac{3\left( \overset{\overline{}}{x} - Me \right)}{S}$


$$\chi^{2} = \frac{n\left( ad - bc \right)^{2}}{\left( a + c \right)\left( b + d \right)\left( a + b \right)(c + d)}$$


$$h \geq \frac{x_{\max} - x_{\min}}{k}$$


F(x) = P(X < x)


ϕ(−u) = 1 − ϕ(u)∖n


R =  xmax − xmin


$$f\left( x \right) = \frac{1}{\sigma\sqrt{2\pi}}\exp\left\lbrack - \frac{{(X - \mu)}^{2}}{2\sigma^{2}} \right\rbrack$$


$$\text{cov}\left( x,y \right) = \frac{1}{n}\sum_{i = 1}^{n}\left( x_{i} - \overset{\overline{}}{x} \right)\left( y_{i} - \overset{\overline{}}{y} \right)$$


$$\text{cov}\left( y,y \right) = \frac{1}{n}\sum_{i = 1}^{n}\left( y_{i} - \overset{\overline{}}{y} \right)^{2} = S^{2}$$


$$cov(x,y) = \frac{1}{n}\sum_{i = 1}^{k}{\sum_{j = 1}^{s}{\left( x_{i} - \overset{\overline{}}{x} \right)\left( y_{j} - \overset{\overline{}}{y} \right)n_{\text{ij}}}}$$


$$q_{p} = x_{q}^{-} + \frac{h_{q}}{n_{q}}\left( n*p - \sum_{i = 1}^{q - 1}n_{i} \right)$$


$$k \approx \sqrt{n},\ k \leq 5\ \log n$$


$$C = \begin{bmatrix} \text{yy} & \text{yx} & \text{yz} \\ \text{xy} & \text{xx} & \text{xz} \\ \text{zy} & \text{zx} & \text{zz} \\ \end{bmatrix}$$


$$R = \begin{bmatrix} \text{yy} & \text{yx} & \text{yz} \\ \text{xy} & \text{xx} & \text{xz} \\ \text{zy} & \text{zx} & \text{zz} \\ \end{bmatrix}$$


$$Me = \left\{ \begin{matrix} X_{\frac{n + 1}{2},\ \ \ \ gdy\ nieparzyste} \\ \frac{1}{2}\left( X_{\frac{n}{2}} + X_{\frac{n}{2} + 1} \right) \\ \end{matrix} \right.\ $$


$$Mo = X_{\text{Mo}}^{-} + \frac{\left( n_{\text{Mo}} - n_{Mo - 1} \right)*h}{\left( n_{\text{Mo}} - n_{Mo - 1} \right) + \left( n_{\text{Mo}} - n_{Mo + 1} \right)}$$


$$\hat{y_{i}} = a + bx\backslash n$$


$$\mathbf{b} = \frac{n*\sum_{}^{}{\left( x_{i}y_{i} \right) - \sum_{}^{}{x_{\text{i\ }}*\ \sum_{}^{}y_{i}}}}{n*\ \sum_{}^{}{{x_{i}^{2}}_{\text{i\ }}*}\ {(\sum_{}^{}x_{i})}^{2}}$$


$$a = \overset{\overline{}}{y} - b\overset{\overline{}}{x}$$


X ∼ B(n, p)


$$P\left( X = k \right) = \left( \frac{n}{k} \right)p^{k}\left( 1 - p \right)^{n - k}$$


$$\left( \frac{n}{k} \right) = \frac{n!}{k!\left( n - k \right)!}$$


E(X) = n * p


D2(X) = n * p * q

q = 1-p


X ∼ N(μ, σ)∖nF(x) = P(x < x)


P(aX<b) = F(b) − F(a)


F(xp) ≤ p ≤ F(xp) + 0


X ∼ P(λ)


λ = n * p


E(X) = λ


D2(X)=λ


$$P\left( X = k \right) = \frac{\lambda^{k}}{k!}*e^{- \lambda}$$


e ≈ 2, 718


$$r = \frac{\sum_{}^{}{\left( x_{i} - \overset{\overline{}}{x} \right)\left( y_{i} - \overset{\overline{}}{y} \right)}}{\sqrt{\sum_{}^{}{\left( x_{i} - \overset{\overline{}}{x} \right)^{2}*\sum_{}^{}\left( y_{i} - \overset{\overline{}}{y} \right)^{2}}}}\backslash n$$


$$\overset{\overline{}}{x} = \frac{\sum_{}^{}{x_{i}*n_{i}}}{N}$$


$$\overset{\overline{}}{x_{H}} = \frac{n}{\sum_{i = 1}^{k}\frac{n_{i}}{x_{i}}}$$


$$\overset{\overline{}}{x} = \frac{1}{n}\sum_{i = 1}^{k}{x_{i}*n_{i}}$$


$$\overset{\overline{}}{x} = \frac{1}{n}\sum_{i = 1}^{k}{x_{i}^{'}*n_{i}}$$


$$x_{i}^{'} = \frac{x_{i}^{-} + x_{i}^{+}}{2}$$


$$U = \frac{X - \mu}{\sigma}$$

E(X) = U(albo μ)=Me = Mo

D2(X) = σ2

$\tilde{x_{H}\ }$=$\ \frac{n}{\sum_{i = 1}^{n}{\text{\ \ }\frac{n_{i}}{x_{i}}}}$


$$S^{2} = \frac{1}{N}\sum_{i = 1}^{n}{\left( x_{i} - \overset{\overline{}}{x} \right)^{2}*n_{i}}$$


$$S = \sqrt{S^{2}}$$


$$S_{e}^{2} = \frac{1}{n}\sum_{i = 1}^{n}\left( y_{i} - \hat{y_{i}} \right)^{2}$$


$${\hat{n}}_{\text{ij}} = \frac{n_{i}*n_{j}}{n}$$


$$\hat{y} = ax + b$$


R2 = 1 − φ2


$$r_{i} = \frac{2R}{\frac{1}{2}n(n - 1)} - 1$$


$$r = \frac{\text{cov}\left( x,y \right)}{S_{x}*S_{y}}$$


$$r_{\text{yx.z}} = \frac{r_{\text{yx}} - r_{\text{yz}}*r_{\text{xz}}}{\sqrt{\left( 1 - r_{\text{yz}}^{2} \right)\left( 1 - r_{\text{xz}}^{2} \right)}}$$


$$r_{\text{yz.x}} = \frac{r_{\text{yz}} - r_{\text{yx}}*r_{\text{zx}}}{\sqrt{\left( 1 - r_{\text{yx}}^{2} \right)\left( 1 - r_{\text{zx}}^{2} \right)}}$$


$$r_{\text{xz.y}} = \frac{r_{\text{xz}} - r_{\text{xy}}*r_{\text{zy}}}{\sqrt{\left( 1 - r_{\text{xy}}^{2} \right)\left( 1 - r_{\text{zy}}^{2} \right)}}$$

ryx.z , ryz.x , rxz.y


$$r = 1 - \frac{6\sum_{i = 1}^{n}d_{i}^{2}}{n\left( n^{2} - 1 \right)}$$

(-1:1)


di = yir − xir


$$\varphi^{2} = \frac{\sum_{}^{}\left( y_{i} - \hat{y_{i}} \right)^{2}}{\sum_{}^{}\left( y_{i} - \hat{y} \right)^{2}}$$


$$V = \sqrt{\frac{\chi^{2}}{n*min(k - 1;s - 1)}}$$


$$X^{2} = \frac{n(a*d - b*c)}{(a + c)(b + d)(a + b)(c + d)}\ (0:1)\backslash n$$

y X

x1 x2
y1 A B
y2 c D

i
a+c b+d


$$V = \frac{S*100\%}{\overset{\overline{}}{x}}$$


Wyszukiwarka

Podobne podstrony:
Stat wzory, Statystyka - podstawowe wzory
EKONOMETRIA WZORY 3 STR , Inne
Wzory stat, Statystyka - podstawowe wzory
Finanse Wycena wzory (str 1) id 171461
popyt-wzory (2 str), Ekonomia, ekonomia
Osnowa str.2, Wzory
wzory ćwiczenia finanse z opisem
Wzory Statystyka z opisem
popyt-wzory (2 str), Ekonomia
Osnowa str.1, Wzory
ekonometria - wzory (3 str), Ekonomia, ekonomia
Konspekt str.1, Wzory
Wzory Stat 1, CHIEFO
Konspekt str.2, Wzory
ekonometria wzory (3 str)
spółki cerkolor biznes plan (60 str), BIZNES PLAN WZORY
Wzory statystyka z opisem, Semestr II, Statystyka opisowa

więcej podobnych podstron