104


LABORATORIUM FIZYKI II

Ćwiczenie nr:

14

Wydział:

Mechatronika

Grupa:

R 39

Zespół:

6

Data wykonania:

15-03-2000

Nazwisko i imię:

Żelski Krzysztof

Ocena

Przygotowanie:

Sprawozdanie przyjęto:

Data:

Podpis:

Zaliczenie

Prowadzący:

Wstęp:

W trakcie ćwiczenia wyznaczaliśmy parametry pętli histerezy oraz pojemność elektryczną próbki ferroelektryka. Teoria mówi, że ferroelektryki to ciała stałe, w których podnoszenie temperatury ponad pewną wartość (zwaną temperaturą Curie) powoduje, że koncentracja cząsteczek maleje z powodu rozszerzalności cieplnej. W ciałach takich poniżej temperatury Curie obserwuje się zjawisko histerezy, polegającej na tym, że ich polaryzacja zależy w charakterystyczny sposób nie tylko od natężenia pola, ale i od historii próbki.

Przeprowadzenie doświadczenia:

W pierwszej części wyznaczaliśmy parametry pętli histerezy dla próbki ferroelektryka (trójsiarczanu glicyny) w funkcji temperatury.

Wyniki pomiarów znajdują się w poniższej tabeli:

T [K]

303,16

308,16

313,16

318,16

320,16

321,16

322,16

322,36

322,56

322,76

322,96

323,16

Uy=LySy [V]

1,1

0,9

0,8

0,525

0,4

0,275

0,125

0,1

0,085

0,075

0,075

0,05

Uc=LxSx [V]

0,625

0,6

0,55

0,5

0,45

0,4

0,325

0,3

0,25

0,25

0,225

0,15

P=UyC1/A [C/m2]

0,0259

0,02115

0,0188

0,01234

0,0094

0,006463

0,00294

0,00235

0,002

0,00176

0,00176

0,001175

Ec=Uc/d [V/m]

781,25

750

687,5

625

562,5

500

406,25

375

312,5

312,5

281,25

187,5

Cx [F]

1E-10

1,3E-10

2E-10

3,3E-10

4,3E-10

5,55E-10

6,4E-10

6,6E-10

6,7E-10

6,7E-10

6,5E-10

6,1E-10

E=Cxd/EoA

501,7

596,6

836,2

1468,9

1943,5

2508,5

2892,7

2960,5

3028,2

3028,2

2937,9

2757,1

W trakcie doświadczenia dodatkowo przerysowaliśmy otrzymane histerezy dla temperatur 35°C, 48°C, 49°C

Na podstawie otrzymanych wyników sporządzam wykresy pola koercji oraz polaryzacji całkowitej w funkcji temperatury:

0x08 graphic
0x08 graphic

Z powyższych wykresów można odczytać temperaturę Curie, która wynosi:

W drugiej części mierzyliśmy pojemność próbki w funkcji temperatury. Wyniki pomiarów znajdują się poniżej:

T [K]

303,16

308,16

313,16

318,16

320,16

321,16

322,16

322,36

Cx [F]

1E-10

1,3E-10

2E-10

3,3E-10

4,3E-10

5,55E-10

6,4E-10

6,6E-10

E=Cxd/EoA

501,7

596,6

836,2

1468,9

1943,5

2508,5

2892,7

2960,5

X=E-1

500,7

595,6

835,2

1467,9

1942,5

2507,5

2891,7

2959,5

1/X

0,002

0,00168

0,0012

0,00068

0,00051

0,000399

0,00035

0,00034

T [K]

322,56

322,76

322,96

323,16

328,16

333,16

338,16

343,16

Cx [F]

6,7E-10

6,7E-10

6,5E-10

6,1E-10

1,4E-10

8,5E-11

6E-11

4,2E-11

E=Cxd/EoA

3028,2

3028,2

2937,9

2757,1

610,2

384,2

271,2

189,8

X=E-1

3027,2

3027,2

2936,9

2756,1

609,2

383,2

270,2

188,8

1/X

0,00033

0,00033

0,00034

0,000363

0,00164

0,00261

0,0037

0,0053

0x08 graphic
Poniżej narysowana jest zależność stałej dielektrycznej w funkcji temperatury, oraz wykres odwrotności podatności elektrycznej w funkcji temperatury bezwzględnej pozwalający sprawdzić słuszność prawa Curie Weissa.

Z powyższego wykresu możemy również wyznaczyć temperaturę Curie. Dla tej temperatury stała dielektryczna ferroelektryka jest maksymalna. Odczytana z wykresu temperatura wynosi: Tc=323±0,2 [K]

Według teorii wykres 1/X w funkcji temperatury bezwzględnej powinien być dla temperatur wyższych od temperatury Curie linią prostą. Nasze doświadczenie potwierdza ten fakt. Wychodząc z prawa Curie-Weissa:

0x08 graphic
Na poniższym wykresie narysowana jest prosta wraz z równaniem ją opisującym:

0x08 graphic
Do sprawozdania załączony jest wykres z N-kwadrat.

a=0,00023868±0,00001203769

b=0,07679603±0,004011381

Wynika z powyższych, że a=1/Cc=0,00023868±0,00001203769.

0x08 graphic
Zatem stała Curie wynosi Cc=4200±200 [K]

Niestety w żadnej literaturze nie mogłem znaleźć rzeczywistej wartości tej stałej, tak więc nie mam pewności co do poprawności rozważań i otrzymanego wyniku. Z tych samych zależności wynika również, że temperatura Curie wynosi:

0x08 graphic

Tc=322±3[K]

A więc temperatura wyznaczona na podstawie prawa Curie pokrywa się w granicach błędu z otrzymaną z wykresu polaryzacji. Ewentualne 4

błędy wynikają z niedokładności odczytania temperatury z wykresu oraz ze zbyt małej ilości pomiarów w okolicy wyznaczanej temperatury.

Wnioski:

Z wykresów polaryzacji całkowitej, pola koercji i stałej dielektrycznej w funkcji temperatury wynika, że (średnia) temperatura Curie wynosi Tc=323,3±0,2 [K]. Temperatura ta wyznaczona z prawa Curie Weissa wynosi Tc=322±3 [K]. Wykresy otrzymane doświadczalnie potwierdza teorię, a mianowicie w temperaturach niższych od temperatury Curie w ferroelektrykach mamy do czynienia z „zamrożonym” stanem uporządkowania domenowego. Zwiększając temperaturę, a więc zbliżając się do temperatury Curie, powodujemy, że wzmagają się ruchy cieplne sieci krystalicznej, powodujące niszczenie uporządkowanej struktury, co prowadzi to tego iż ferroelektryk staje się dielektrykiem (po przekroczeniu temperatury Curie), a co za tym, idzie jego polaryzacja całkowita spada niemal do zera i znika pole koercji.

Zjawisko histerezy występuje jedynie dla ferroelektryków. Krzywa zależności pola koercji w funkcji temperatury potwierdza zatem fakt, że po przekroczeniu temperatury Curie ferroelektryk staje się dielektrykiem. Wskazuje na to fakt, że pole koercji spada do zera (a tym samym krzywa histerezy staje się prostą) gdy temperatura próbki wzrośnie do naszej temperatury krytycznej.

Z wykresu stałej dielektrycznej w funkcji temperatury widać, że największe wartości stała ta przyjmuje w okolicach temperatury Curie, a więc tu gdzie podatność. Wynika, to z faktu, że podatność ferroelektryków jest odwrotnie proporcjonalna nie do temperatury bezwzględnej jak dla substancji polarnych, ale do różnicy pomiędzy temoeraturą T i temperaturą Curie.

Kształt pętli histerezy jest oczywiście zgodny z teoretycznym. Ja już wcześniej wyjaśniałem pętla histerezy jest „spłaszana” wraz ze wzrostem temperatury (przy Tc jest już prostą) ponieważ ruchy cieplne powodują rozbicie uporządkowanej struktury domen, a tym samym ferroelektryk staje się dielektrykiem, który nie posiada histerezy.

2

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic



Wyszukiwarka

Podobne podstrony:
1997 (104)
highwaycode pol c20 sygnaly policjii innych (str 104,105)
50 104 id 40827 Nieznany (2)
104 169
2 (104)
104 Na czym polega Umowa z Schengenid745
formy teatralne w przedszkolu 104 1622
104, Politechnika Poznańska ZiIP, II semestr, Fizyka, laborki fiza, Laborki, laborki fiza, Fizyka -
WYKŁADY. PRAWO FINANSOWE. (104 STRON), PRAWO, STUDIA, PRAWO FINANSOWE
104
03 104, Fizyka 104
104, Prawo, WZORY PISM, Wzory Pism 2
PJM Poziom A2 Strona 104
5 E Aronson s 66 104 id 40102 Nieznany
Kosslyn, Rosenberg Psychologia mózg człowiek świat str 104 155

więcej podobnych podstron