zjawiska pogodowe, Świetlica


Pogoda to zmienne warunki meteorologiczne na danym obszarze kuli ziemskiej. Ogół zjawisk pogodowych na danym obszarze w okresie wieloletnim (przynajmniej 30 lat) określany jest jako klimat.


Jej stan określają składniki pogody (czyli fizyczne właściwości troposfery):

Badaniem zjawisk pogodowych zajmuje się meteorologia, ich przewidywaniem dział meteorologii - synoptyka. Dane meteorologiczne zbierane są przez stacje meteorologiczne. W Polsce sieć tych stacji obsługiwana jest przez Instytut Meteorologii i Gospodarki Wodnej.

Burze - intensywne opady deszczu lub deszczu i gradu, którym towarzyszą wyładowania elektryczne w atmosferze (błyskawice i grzmoty).



Szybki rozwój ogromnych gęstych chmur burzowych (tzw. Cumulonimbusy) o wysokości 10-16 km i szerokości ok. 8 km i wilgotny, chłodny wiatr, zwiastujący zbliżającą się burzę, są dobrze znane w większości regionów świata strefy tropikalnej i umiarkowanej. Na całym świecie w tym samym czasie ma miejsce około 1800 burz i około 100 wyładowań w ciągu sekundy. Powietrze w górnych warstwach atmosfery jest o wiele zimniejsze niż przy powierzchni Ziemi. Ciepłe powietrze jest lżejsze od zimnego i unosi się do góry. W trakcie wznoszenia powietrze się rozpręża oraz ochładza się. Wznoszące się powietrze w trakcie rozprężania staje się chłodniejsze od otoczenia, a więc cięższe i opada na dół.

Inaczej przebiega ten proces, gdy wznoszące się powietrze zawiera dużo pary wodnej. W miarę ochładzania się powietrza, zawarta w nim para się skrapla. Przy kondensacji, wydziela się dużo ciepła. Uwalniające się ciepło powoduje, że powietrze wilgotne stygnie wolniej i jest stale cieplejsze, a więc lżejsze od otoczenia. To jest właśnie mechanizm, który powoduje, że w obszarze burzy powietrze bardzo gwałtownie wznosi się do góry i osiąga wysokość powyżej 16 km. Na tej wysokości temperatura jest bardzo niska (około -60 °C). Dość chłodne powietrze, jak tylko dotrze do powierzchni ziemi, zaczyna rozchodzić się na boki, dlatego zwykle przed burzą wieje chłodny wiatr. Wkrótce potem niebo przeszywa błysk (który może mieć ponad kilkadziesiąt km długości), rozlega się grzmot i spada ulewny deszcz. W pojedynczej komórce burzowej po 20-30 minutach zaczyna dominować prąd zstępujący i chmura "wyparowuje się".

Pojedyncze komórki burzowe często łączą się tworząc multikomórki burzowe lub układają się w linię szkwału (wzdłuż frontów chłodnych). Jeśli istnieją ku temu odpowiednie warunki (zmiany kierunków lub prędkości wiatru na różnych wysokościach czyli tzw. uskoki wiatru), które spowodują odseparowanie prądu wstępującego od zstępującego, to wówczas pojedyncza chmura burzowa może przemienić się w superkomórkę i istnieć nawet przez wiele godzin.

Piorun jest wyładowaniem elektrycznym o bardzo dużym natężeniu, które przenosi w kierunku ziemi ujemne ładunki elektryczne. Przepływ elektronów może odbywać się także wewnątrz chmury, między różnymi jej warstwami. W momencie, kiedy ładunek przewodni zaczyna wędrować ku ziemi, przenosi ujemny ładunek elektryczny i pozostawia za sobą kanał silnie zjonizowanego powietrza o średnicy 1-5 cm, tworząc po drodze rozgałęzioną ścieżkę. Poszczególne gałęzie ścieżki rosną i w końcu jedna z nich osiąga punkt na Ziemi sprowadzając ładunki ujemne. Przepływ ten zwany jest wyładowaniem wstępnym lub liderem. Intensywny przepływ ładunków dodatnich trwa zaledwie około 0.0001 sekundy, lecz jest ponad 1000 razy większy od przepływów w domowej sieci energetycznej. Teraz wyjątkowo jasne wyładowanie zaczyna biec w górę tym samym kanałem i przenosi ono do chmury cząsteczki dodatnie zwane powrotnymi. Potem następują kolejne wyładowania wstępne oraz powrotne, które wykorzystują ten sam zjonizowany kanał. Cały ten proces powtarzany jest kilkakrotnie w ciągu ułamka sekundy, dopóki ładunki w chmurze nie zostaną zneutralizowane. Błyskawice świecą, ponieważ świeci powietrze rozgrzane do wysokiej temperatury, co jest spowodowane przepływem prądu. Grzmot, jaki towarzyszy błyskawicy jest również skutkiem gwałtownego rozgrzania powietrza. Skokowy wzrost temperatury powietrza powoduje również skokowy wzrost ciśnienia. To zaburzenie rozchodzi się w postaci fali dźwiękowej słyszanej przez nas jako grzmot.

Burza w wielu dawnych wierzeniach odgrywała bardzo istotną rolę, zaś bogowie / bóstwa za nią odpowiadające niejednokrotnie zajmowały w danych wierzeniach najważniejsze miejsca.

I tak np. w mitologii słowiańskiej piorun symbolizuje boga Peruna - uważanego przez badaczy za władcę słowiańskiego panteonu. Wierzono, że pierwsze uderzenie pioruna zapładnia ziemię. W mitologii greckiej za burzę odpowiedzialny był Zeus, władca błyskawic. Mitologia nordycka bogiem burzy i piorunów określała Thora. W mitologii rzymskiej bogiem burzy był Jowisz, najwyższy władca nieba i ziemi, ojciec bogów. Mitologia egipska za boga burzy uważała Seta, zaś mitologia celtycka - Taranisa (gromowładcę, utożsamianego z rzymskim Jowiszem).

W Polsce - według wierzeń ludowych - w celu uchronienia się przed zniszczeniami spowodowanymi przez burzę w oknach zapalano gromnicę (nazwa tej woskowej świecy pochodzi od słowa grom; zapalona świeca stojąca w oknie miała za zadanie uchronić dom oraz obejście od uderzeń piorunów). Tradycyjnie świece nazywane gromnicami święci się w dzień Święta Ofiarowania Pańskiego, które to święto funkcjonuje także pod potoczną nazwą święta Matki Boskiej Gromnicznej.

Grad - opad atmosferyczny w postaci bryłek lodu (nazywanych gradzinami lub gradowinami) o średnicy od 5 mm do 50 mm. Opad gradu następuje zwykle w ciepłej porze roku z mocno rozbudowanych chmur typu cumulonimbus i bywa połączony z silnym opadem deszczu. Obfity grad ze szczególnie dużymi gradowinami, tzw. gradobicie, może spowodować znaczące straty, w szczególności w rolnictwie i może trwać nawet kilka godzin.

Śnieg - opad atmosferyczny w postaci kryształków lodu o kształtach głównie sześcioramiennych gwiazdek, łączących się w płatki śniegu. Po opadnięciu na ziemię tworzy porowatą pokrywę śnieżną o niewielkiej gęstości także zwaną śniegiem.

Śnieg powstaje, gdy w chmurach para wodna krystalizuje, tworząc kryształy lodu.

Płatek śniegu to struktura kryształów śniegu, mogąca mieć do kilku centymetrów. Czasem określa się tak samo również pojedyncze kryształki.

Większość kryształków śniegu jest płaska i ma po sześć, w przybliżeniu identycznych, ramion. W zależności od temperatury, wilgotności i ciśnienia powietrza, powstają jednak również inne formy, takie jak kolumny, igły, płytki i grudki. Struktura ich wynika z procesu powstawania, który zaczyna się od kondensacji lodu na cząstce pyłu. Początkowo powstaje sześciokątny płaski kryształ o wielkości ułamka milimetra. W temperaturach między -1 a -3 °C oraz między -10 a -20 °C warunki bardziej sprzyjają osadzaniu się lodu na krawędziach i na krysztale wyrasta sześć ramion. W temperaturach między -5 a -10 °C oraz poniżej -20 °C bardziej sprzyjają osadzaniu się lodu na powierzchniach, a wtedy kryształ rośnie w pionie i przyjmuje kształt igły. W przypadkowych miejscach igły rozpoczyna się krystalizacja nowej igły, tworzącej z wyjściową kąt 60°. Pozostałe kształty powstają, gdy w czasie wzrostu kryształu warunki zmienią się w którąś stronę.

Kryształki śniegu są prawie idealnie symetryczne, choć większość ma łatwe do zauważenia nieregularności. Na zdjęciach częściej przedstawia się te najbardziej symetryczne, ze względu na ich urodę. Przyczyna, dla których sześć niezależnie rosnących ramion kryształu przyjmuje identyczny kształt, a jednocześnie żadne dwa kryształki nie są identyczne, nie jest jeszcze w pełni zrozumiana. Badania pokazują, że proces rośnięcia jest bardzo wrażliwy na niewielkie zmiany temperatury i wilgotności. Każdy kryształek poruszając się wewnątrz chmury przechodzi przez unikalne zmiany tych czynników, dlatego kształt każdego jest inny. Jednocześnie sześć ramion kryształu podróżuje razem, więc natrafia na identyczne warunki i rośnie identycznie.

Istnieje przekonanie, że nie istnieją dwa identyczne płatki śniegu. Faktycznie w przypadku każdego makroskopowego obiektu jest niesłychanie mało prawdopodobne żeby istniały we Wszechświecie jego dwie kopie identyczne na poziomie molekularnym. W praktyce łatwość zauważania nawet niewielkich różnic w symetrycznej strukturze kryształków śniegu sprawia, że jest mało prawdopodobne znalezienie dwóch kryształków, dla których różnice nie byłyby widoczne gołym okiem.

Tęcza - zjawisko optyczne i meteorologiczne występujące w postaci charakterystycznego wielobarwnego łuku, widocznego gdy Słońce oświetla krople wody w ziemskiej atmosferze. Tęcza powstaje w wyniku rozszczepienia światła załamującego się i odbijającego się wewnątrz kropli wody (np. deszczu) o kształcie zbliżonym do kulistego.

Rozszczepienie światła jest wynikiem zjawiska dyspersji, powodującego różnice w kącie załamania światła o różnej długości fali przy przejściu z powietrza do wody i z wody do powietrza.

Światło widzialne (z antropocentrycznego punktu widzenia) jest widzialną (postrzegalną wzrokiem) częścią widma promieniowania elektromagnetycznego i w zależności od długości fali postrzegane jest w różnych barwach. Kiedy światło słoneczne przenika przez kropelki deszczu, woda rozprasza światło białe (mieszaninę fal o różnych długościach), na składowe o różnych długościach fal (różnych barwach), i oko ludzkie postrzega łuk składający się z sześciu kolorów: czerwony, pomarańczowy, żółty, zielony, niebieski i fioletowy. To są właśnie kolory tęczy.

Pomimo faktu, że w tęczy występuje niemal ciągłe widmo kolorów, tradycyjnie uznaje się, że kolorami tęczy są: czerwony (na zewnątrz łuku), pomarańczowy, żółty, zielony, niebieski, indygo i fioletowy (wewnątrz łuku).

Najczęściej obserwowana jest tęcza główna, lecz mogą pojawić się także tęcze wtórne i następne oraz kilka zjawisk optycznych towarzyszących tęczy opisanych poniżej.

Tęcza pojawia się często w mitologii, religii, literaturze i sztuce. Tęczowa flaga stanowiła symbol masońskiego Zakonu Order of the Rainbow Girls (7 barw), a później również osób homoseksualnych (6 barw).

0x01 graphic

U góry po lewej (8) bieg promieni w kropli (1) tworzących tęczę wtórną (5), po prawej (7) tworzących tęczę pierwotną (3). (2) - wewnętrzne odbicie światła. (4) - rozszczepienie światła. (6) - promienie światła białego. (9) - obserwator. Rejon powstawania tęczy pierwotnej (10) i wtórnej (11). (12) - strefa kropel

0x01 graphic

Rozszczepienie światła białego w kropli

Efekt tęczy może być widoczny wszędzie, gdzie występują krople wody w powietrzu (12) oświetlane przez promienie słoneczne padające z tyłu obserwatora (9), a Słońce znajduje się na stosunkowo niewielkiej wysokości (kącie do poziomu mniejszym niż 40°). Warunkiem uzyskania wyraźnej tęczy jest oświetlenie kropel deszczu (chmury) przez równoległą wiązkę światła słonecznego oraz brak oświetlenia rozproszonego. Najbardziej widowiskowe tęcze można zaobserwować, gdy przed obserwatorem pada intensywny deszcz w odległości od 100 m do kilku kilometrów, jednocześnie chmura, z której pada deszcz, zaciemnia tło tęczy, a pozostała część nieba jest czysta.

Tęcza powstaje również przy wodospadach lub fontannach, dookoła których występują krople wody. Charakterystyczne efekty tęczowe mogą być też czasem zauważone przy podświetlonych chmurach, jako pionowe wstęgi przy odległych deszczach lub virgach, jak również mogą być „sztucznie” uzyskane poprzez rozpylanie kropel wody w powietrzu oświetlonym silnym jednokierunkowym białym światłem.

W specyficznych przypadkach możliwe jest również dostrzeżenie tęczy księżycowej, wywołanej światłem odbitym od Księżyca. Niemniej jednak, ponieważ rozdzielczość ludzkiego oka w warunkach małego naświetlenia nie jest zbyt dobra i człowiek nie widzi kolorów przy słabym oświetleniu, tęcza księżycowa jest postrzegana zazwyczaj jako biały (a nie kolorowy) łuk.

Białe światło słoneczne (6) będące mieszaniną fal o różnej długości (kolorze) wchodząc do kropli ulega załamaniu (4), kąt załamania zależy od długości fali świetlnej w wyniku czego dochodzi do rozszczepienia światła na barwne spektrum, następnie światło odbija się od przeciwległej strony kropli, a wychodząc powtórnie załamuje się, zwiększając rozszczepienie.

Kąt, pod jakim wychodzą promienie z kropli, zależy od miejsca padania światła na kroplę oraz od długości fali świetlnej. Przykładowo najsilniej załamywane światło fioletowe wychodzi pod kątem (w stosunku do promienia padającego) od zera do 40,6° z wyraźnym maksimum intensywności dla kąta 40,3°, światło czerwone załamywane w kącie do 42,3° z maksimum w 42,0°[1]. Istnienie wyraźnych i wąskich maksimów w kątowym rozkładzie światła, spowodowanych zależnością współczynnika odbicia światła od kąta padania (patrz wzory Fresnela), jest główną, poza rozszczepieniem światła, przyczyną powstawania łuku tęczy. Kąty maksimów nie zależą bezpośrednio od wielkości kropel - zależą jednak od ich kształtu, współczynnika załamania światła.

Słona woda ma wyższy współczynnik załamania, co skutkuje mniejszym kątem widzenia łuku tęczy, co można zaobserwować oglądając tęczę powstającą częściowo na rozbryzgach fal morskich i na kroplach deszczu[2]. Z uwagi na napięcie powierzchniowe krople są niemal kuliste, ale duże krople nie są kuliste, w wyniku czego także może ulec zmianie kąt widzenia łuku tęczy.

Światło wewnątrz kropli nie ulega całkowitemu odbiciu, ale częściowemu, przy czym światło o polaryzacji stycznej do promienia łuku tęczy odbija się intensywnie, a światło o polaryzacji prostopadłej słabo. W wyniku tego światło tęczy jest częściowo spolaryzowane liniowo w kierunku stycznym do promienia łuku tęczy (na szczycie łuku pionowo) (patrz kąt Brewstera). Łuk tęczy pierwotnej jest spolaryzowany w około 96%, tęczy wtórnej w około 90%.

Wszystkie oświetlone krople rozszczepiają i odbijają światło w ten sam sposób, ale do oka obserwatora dociera z danej kropli tylko światło rozproszone w jego kierunku. Te właśnie krople są postrzegane jako tworzące tęczę. Z fizycznego punktu widzenia tęcza nie istnieje tak jak przedmiot odbijający światło na danym fragmencie nieba, lecz jest rodzajem efektu optycznego, którego położenie jest związane z położeniem obserwatora i Słońca. W warunkach powstawania tęczy, obserwator, patrząc w kierunku tworzącym kąt 42° do promieni słonecznych, dostrzeże zawsze łuk tęczy o kolorze czerwonym, dlatego tęcza ma kształt łuku. Światło fioletowe będzie widziane na łuku o kącie widzenia 40,3° i dlatego w tęczy kolor fioletowy jest od środka, a czerwony na zewnątrz tęczy. Bez względu na odległość obserwatora od miejsca powstawania tęczy, jego położenia i innych warunków, jej promień jest widoczny pod kątem 40-42°. Słońce znajdujące się powyżej tego kąta nie wywoła tęczy, teoretycznie będzie ona powstawała poniżej linii horyzontu. Wyjątkiem jest sytuacja, gdy obserwator znajduje się na wzniesieniu, w budynku, samolocie lub w podobnej sytuacji, w której może obserwować krople poniżej oczu w zadanym kierunku, wówczas tęcza może stanowić nawet pełny okrąg.

Środek łuku tęczy znajduje się zawsze dokładnie na przedłużeniu promieni słonecznych, które przechodziłyby przez oczy obserwatora, czyli na linii cienia tworzonego przez obserwatora. Dla obserwatora znajdującego się na powierzchni ziemi ów środek łuku tęczy jest zawsze poniżej horyzontu, dlatego łuk tęczy stanowi mniej niż pół okręgu.

Nie tylko światło widzialne ulega załamaniu i odbiciu w kroplach wody. Dysponując odpowiednimi urządzeniami optycznymi, pozwalającymi rejestrować fale spoza zakresu widzialnego, można zaobserwować "podczerwony" łuk tęczy o promieniu większym niż łuk czerwony[3].

Czasami można zaobserwować drugą (wtórną) mniej jasną tęczę, znajdującą się na zewnątrz tęczy właściwej. Tęcza wtórna tworzy łuk o kącie widzenia 50-53° i powstaje w wyniku dwukrotnego odbicia światła wewnątrz kropli wody. Ponieważ odbicie zachodzi dwukrotnie, a różnice w kącie rozproszenia światła w zależności od miejsca padania światła na kroplę są większe, tęcza wtórna jest mniej intensywna i szersza od tęczy pierwotnej.

Trzecia (potrójna) tęcza[4] może być zaobserwowana, jeśli spełnione są odpowiednie warunki takie jak optymalny kąt i intensywność padania promieni słonecznych, dobra widoczność itp. W niektórych przypadkach możliwe jest również występowanie tęczy poczwórnych. Trzeci i czwarty łuk tęczy powstają po tej samej stronie nieba co Słońce, co czyni je trudnymi do dostrzeżenia z uwagi na intensywność światła samego Słońca, dodatkowo załamanego (bez odbicia) w kroplach wody. Pierwsze zdjęcia tęczy trzeciego i czwartego rzędu zostały wykonane dopiero w 2011 roku[5].

Światło wychodzące z tylnej części kropli powoduje powstawanie efektów świetlnych i zgodnie z numeracją efekty te powinny być nazywane przez fizyków tęczą zerową. Światło wychodząc z tyłu kropli też ulega załamaniu, ale pod mniejszym kątem i nie obserwuje się wyraźnego maksimum natężenia dla wybranej fali w jakimś kierunku. Kolory z różnych kropel ulegają ponownemu połączeniu i obserwator nie jest w stanie dostrzec efektu rozszczepienia.

0x01 graphic

Tęcza podwójna, ciemniejszy obszar pomiędzy nimi to pas Aleksandra

Promienie padające na krople bliżej środka, niż te tworzące maksimum jasności, ulegają załamaniu pod mniejszym kątem. W wyniku zmieszania światła o różnych barwach powstaje jaśniejszy obszar. Nie zawsze jest on biały, czasami powstają w nim opisane niżej tęcze wielokrotne. Na podobnej zasadzie jasny pas tworzy się na zewnątrz tęczy wtórnej, lecz jest on znacznie słabszy.

Ciemny fragment nieba leżący pomiędzy obydwiema tęczami jest określany mianem pasa Aleksandra, od imienia Aleksandra z Afrodyzji, który pierwszy opisał to zjawisko. Pociemnienie w tym pasie jest wywołane kontrastem z jaśniejszym obszarem tęczy pierwotnej i wtórnej oraz wnętrza tęczy pierwotnej. Różnice w jasności tych obszarów wynikają z różnic odbicia światła w różnych kierunkach.

0x01 graphic

Tęcza wielokrotna - dodatkowe „pulsacyjnie” zielono-fioletowe łuki wewnątrz tęczy pierwotnej (kontrast powiększono)

0x01 graphic

Tęcza pierwotna i wtórna, tęczę światła odbitego oraz odbicie tęczy w wodzie

0x01 graphic

Zjawisko podwójnej tęczy uchwycone w Mieście

Czasami występują przepiękne zjawiska tęczowe składające się z szeregu mniej widocznych łuków znajdujących się wewnątrz tęczy właściwej, a bardzo rzadko również i na zewnątrz łuku tęczy wtórnej. W łukach tych kolory są położone blisko siebie, tak że trudno w nich rozróżnić pełną gamę kolorów tęczy. Tęcze takie noszą nazwę wielokrotnych, a ich występowanie nie jest możliwe do wytłumaczenia przy użyciu optyki geometrycznej układu optycznego, jakim jest kropla wody.

Tęcze takie tworzą się w wyniku interferencji promieni światła załamanych pod mniejszym kątem, bo padły bliżej środka kropli, oraz promieni z maksimum, które uległy dyfrakcji (teoria Airy'ego). Gdy te dwa promienie po wyjściu z kropli będą w fazie fali, wzajemnie wzmocnią się (powstaną jaśniejsze kręgi), gdy fale będą miały przeciwne fazy, wytłumią się (kręgi ciemniejsze). Warunki fazowe zależą od długości fali, dlatego kręgi są kolorowe.

Tęcze wielokrotne są najlepiej widoczne, gdy krople są niewielkie i jednakowej wielkości. Sam fakt ich występowania był historycznie pierwszą wskazówką, że światło ma naturę falową, a pierwsze wyjaśnienie tego zjawiska zostało zaproponowane przez Thomasa Younga w 1804 roku.

Wcześniej wspomniano, że światło przechodzące przez kroplę bez odbicia nie tworzy tęczy, ale w wyniku dyfrakcji i interferencji światła, podobnie jak tęcze wielokrotne, powstają efekty kolorystyczne - kolorowe pierścienie wokół Słońca o kącie dochodzącym do 15°[6]. Efekty te, zwane koroną słoneczną, czasami są mylone z powstającym na kryształkach lodu halo o kącie widzenia promienia 22° lub 46°.

Jeszcze inne wariacje tęczy mogą być zaobserwowane dla przypadków, kiedy światło odbija się od lustra wody, zanim zostanie rozszczepione przez krople deszczu. Dochodzi wtedy do powstania tęczy „odbiciowej”. Z uwagi na zmianę kąta padania promieni słonecznych (od dołu w górę), środek łuku tęczy znajduje się na niebie, możliwe jest wówczas zaobserwowanie znacznie większej długości łuku niż przy zwykłych tęczach. Przy tęczach „odbiciowych” również możliwe jest wystąpienie pierwotnego i wtórnego łuku. Na zdjęciu obok tęcza odbiciowa, słabo widoczny prawie pionowy łuk w pasie Aleksandra.

Można również mówić o odbiciu tęczy (czy też tęczy odbitej), które występuje, gdy rozszczepione światło odbija się od lustra wody zanim dotrze do obserwatora. Odbicie tęczy nie jest odbiciem lustrzanym pierwotnego łuku, ale widoczne jest jako przesunięte o kąt zależny od pozycji Słońca, co jest widoczne na zdjęciu obok.

Teoria tęczy oparta na optyce geometrycznej (tzw. kartezjańska teoria tęczy) wykorzystująca do opisu rozpraszania światła na kroplach wody pojęcie promienia świetlnego, którego drogę określają prawa załamania i odbicia światła na granicy powietrze - kropla jest uproszczeniem, nie wyjaśniającym wszystkich aspektów tęczy. Dokładniejszy opis zjawiska rozpraszania światła na kulistych kroplach daje, znana od 1908 teoria zwana rozwiązania Mie[7]. Rozwiązania Mie, na podstawie równań Maxwella, podają wzór na natężenie rozproszonego światła w postaci zbieżnego szeregu zależnego od długości fali świetlnej, kąta rozproszenia i wielkości kropel.

Przypuszcza się, że perski astronom Qutb al-Din al-Shirazi (1236-1311) lub jego student Kamal al-din al-Farisi (1260-1320) podał po raz pierwszy w miarę dokładny opis sposobu powstawania tęczy[8].

Badania Roberta Grosseteste'a dotyczące światła były kontynuowane przez Rogera Bacona, który opublikował swój Opus Majus w 1268 roku, mówiący o eksperymentach ze światłem rozszczepianym przez kryształy i krople wody i ukazującym kolory tęczy[9].

Theodor z Fryburga jest również znany jako autor dokładnego wyjaśnienia zjawiska tęczy (w roku 1307). Wyjaśnił on, że tęcza pierwotna powstaje, kiedy światła pada na poszczególne krople wody, promienie ulegają dwóm rozproszeniom (przy wejściu i wyjściu) i jednemu odbiciu (na tylnej powierzchni kropli) zanim dotrą do oka obserwatora[10]. Tęczę wtórną wyjaśnił na podstawie podobnego procesu obejmującego dwa rozproszenia i dwa odbicia.

0x01 graphic

Szkic René Descartesa wyjaśniający powstawanie tęczy pierwotnej i wtórnej

W 1637 roku René Descartes poszedł jeszcze dalej w swoich rozważaniach. Wiedząc, że rozmiar kropli deszczu nie wpływa na zjawisko tęczy, eksperymentował z przepuszczaniem światła przez duże szklane kule wypełnione wodą. Mierząc kąty promieni padających i wychodzących wywnioskował, że tęcza pierwotna jest powodowana przez pojedyncze odbicie wewnątrz kropli, podczas gdy tęcza wtórna powodowana jest przez odbicie podwójne. Znając te fakty, Kartezjusz sformułował prawa refrakcji (co prawda nieco później niż Snell, ale niezależnie od niego) i poprawnie obliczył kąty dla pierwotnego i wtórnego łuku. Jego wyjaśnienie dotyczące kolorów było jednak oparte na klasycznej teorii, w której kolory powstawały przez odpowiednią modyfikację białego światła.

Isaac Newton był pierwszym, który zademonstrował, że białe światło składa się z promieni o kolorach tęczy. Dowiódł tego poprzez eksperymenty z pryzmatem, w którym następowało rozszczepienie światła białego na pełne widmo kolorów, odrzucając tym samym teorię, że kolory były produkowane poprzez modyfikację białego światła. Wykazał on również, że czerwone światło jest załamywane w mniejszym stopniu niż niebieskie i zaproponował pierwsze naukowe wyjaśnienie podstawowych cech tęczy. Korpuskularna teoria światła przedstawiona przez Newtona nie była jednak w stanie wyjaśnić zjawiska tęczy wielokrotnej, której powstawanie zostało opisane dopiero przez Thomasa Younga, który zauważył, że w pewnych warunkach światło zachowuje się jak fala, więc może zachodzić interferencja promieni słonecznych pomiędzy sobą. Badania Younga zostały udoskonalone po roku 1820 przez George'a Biddella Airy'ego, który dyfrakcją wyjaśnił zależność jasności kolorów tęczy oraz istnienie tęczy wielokrotnych od rozmiarów kropel deszczu.

Goethe, sprzeciwiając się Newtonowi i jego zbyt matematycznej optyce, a także jego teorii kolorów, postulował fenomenologię kolorów. Dla Goethego wygląd (pozory) nie mogły być zjawiskiem obiektywnym, musiały być zrozumiane przy pomocy globalnej teorii postrzegania (percepcji) - uważał on światło za źródło życia zjawisk związanych z kolorami.

0x01 graphic

Koniec/początek tęczy

Tęcza zajmuje dość znaczące miejsce w mitologii i legendach, najprawdopodobniej z uwagi na jej piękno i trudność w wyjaśnieniu tego zjawiska.

0x01 graphic

Podwójna tęcza uwidoczniona na obrazie olejnym Petera Rubensa

Tęcza jest często podmiotem utworów literackich i dzieł sztuki, malowali ją m.in. Peter Paul Rubens i George Inness (zobacz też skrót do Wikicytatów po prawej stronie). Jak wspomniano powyżej, tęcza wspomniana jest w Biblii - Biblia Gdańska, Stary Testament, Księga Rodzaju, Rozdział 9 (hebr. קשת qeszet):

[...]

12 Tedy rzekł Bóg: To jest znak przymierza, który Ja dawam między mną i między wami, i między każdą duszą żywiącą, która jest z wami, w rodzaje wieczne.

13 Łuk mój położyłem na obłoku, który będzie na znak przymierza między mną, i między ziemią.

14 I stanie się, gdy wzbudzę ciemny obłok nad ziemią, a ukaże się łuk na obłoku:

15 Że wspomnę na przymierze moje, które jest między mną i między wami, i między każdą duszą żywiącą w każdem ciele; i nie będą więcej wody na potop, ku wytraceniu wszelkiego ciała.

[...]

Maria Konopnicka napisała wiersz zatytułowany Tęcza:

A kto ciebie, śliczna tęczo,

Siedmiobarwny pasie,

Wymalował na tej chmurce

Jakby na atłasie?

[...]

O tęczy również napisał Antoni Kucharczyk:

Po długiej niepogodzie zajaśniało słońce,

Na niebie zachmurzonym, na kształt pół-obręczy

Zajaśniał łuk świetlany siedmiobarwnej tęczy,

Piją zbyteczne wody obydwa jej końce.

[...]

Tęcza występuje również w wielu utworach literatury międzynarodowej - należy tutaj wymienić takich twórców jak: Virginia Woolf, William Wordsworth, John Keats, Richard Dawkins czy David Herbert Lawrence.

Fotografowanie tęczy może nastręczać pewnych trudności. Aby objąć całą szerokość łuku aparat fotograficzny musiałby mieć kąt widzenia równy co najmniej 84°. Dla zwykłego aparatu z filmem 35 mm wymagany byłby obiektyw z ogniskową 19 mm (lub mniej), podczas gdy popularnie stosowany obiektyw szerokokątny ma ogniskową 28 mm. Z pokładu samolotu (lub innego statku powietrznego) teoretycznie możliwe jest uzyskanie pełnego koła tęczy z cieniem samolotu pośrodku.

Tęczy nie należy mylić ze zjawiskiem halo, które jest wokół słońca, a powstają w wyniku innych zjawisk optycznych.

0x01 graphic

"Rainbow of Hearts" - zdjęcie Senga P. Merrilla. (W popkulturze kolejność kolorów tęczy jest czasem zmieniona).

Symbol tęczy jest używany także we współczesnej kulturze, jak np. Over the Rainbow (Ponad tęczą) w filmie z 1939 roku Czarnoksiężnik z Oz lub w piosence The Rainbow Connection („Tęczowe połączenie”) z filmu The Muppet Movie. Nazwę Rainbow ("Tęcza") nosi grupa rockowa założona w 1975 roku przez gitarzystę Deep Purple Ritchiego Blackmore'a. Tytuł RAINBOW otrzymał jeden z albumów japońskiej gwiazdy muzyki pop Ayumi Hamasaki, wydany w 2002 roku, a Rainbow albumy piosenkarek Dolly Parton (1987) i Mariah Carey (1999).

Statek organizacji Greenpeace nazywa się Rainbow Warrior („Tęczowy Wojownik”). Został tak nazwany na cześć legendy Tęczowych Wojowników z plemienia Indian Kri, wedle której: Kiedy świat jest chory i umiera, ludzie powstaną jak Wojownicy Tęczy...[12].

Tęczowe Zloty są zlotami hipisów, którzy zbierają się z misją głoszenia idei pokoju, miłości, wolności i wspólnoty. Rainbow Family („Rodzina Tęczy”) to nazwa jednego z ruchów posthipisowskich.

W ostatnich latach tęczowa flaga została przyjęta jaka symbol międzynarodowej społeczności LGBT. Różne kolory na fladze reprezentują różnorodność środowiska LGBT. Z historycznego punktu widzenia tęczowa flaga została użyta w niemieckiej wojnie chłopów w XVI wieku jako symbol nowej ery, nadziei i socjalnych zmian. Tęczowe flagi były również używane: jako symbol pokoju (zwłaszcza we Włoszech), reprezentowały terytoria imperium Inków w Peru i Ekwadorze, oraz niezależnie społeczności Druzów na Bliskim Wschodzie i Żydowski Obwód Autonomiczny na rosyjskim Dalekim Wschodzie.

W Polsce tęczowa flaga była do lat 90. XX w. symbolem spółdzielczości, m.in. Powszechnej Spółdzielni Spożywców „Społem”. Sekwencja kolorów występująca w tęczy używana jest również w elektronice, do oznaczania parametrów oporników, kondensatorów i innych.

Zorza polarna (Aurora borealis, aurora australis) - zjawisko świetlne obserwowane na wysokich szerokościach geograficznych, występuje głównie za kołem podbiegunowym, chociaż w sprzyjających warunkach bywa widoczna nawet w okolicach 50. równoleżnika. Zdarza się, że zorze polarne obserwowane są nawet w krajach śródziemnomorskich.

Powstawanie zjawiska związane jest z przepływem prądu w jonosferze na wysokości około 100 km ponad powierzchnią Ziemi w obszarze przenikania pasów radiacyjnych i atmosfery ziemskiej.

Podczas rozbłysków Słońce emituje protony o energiach do 1 GeV oraz elektrony o kilka rzędów wielkości mniejszej energii, co wynika z mniejszej masy spoczynkowej tych cząstek. Cząstki te są w większości odchylane przez ziemskie pole magnetyczne. Pułapkowane przez ziemską magnetosferę poruszają się po torze helisy wzdłuż linii pola magnetycznego łączących obydwa ziemskie bieguny magnetyczne powodując wzbudzenia atomów w obszarze polarnym, a skutkiem tego świecenie zorzowe. Atmosfera na dużych wysokościach jest zjonizowana i rozrzedzona, co jest przyczyną także emisji linii wzbronionych. Świecenie zorzowe tworzy ponad 270 linii emisyjnych, głównie tlenu i azotu.

Wiatr słoneczny tworzą emitowane stale przez Słońce protony i elektrony o mniejszych prędkościach, a zatem i energiach, również wtedy, gdy na Słońcu nie obserwuje się plam. Także te są pułapkowane przez ziemskie pasy radiacyjne, ale ze względu na mniejsze energie nie wzbudzają tak intensywnie plazmy jonosferycznej, jak cząstki emitowane podczas rozbłysków i nie powodują większych zórz. Cząstki elementarne z rozbłysków są wysokoenergetyczną fazą wiatru słonecznego. Z powodu różniącego się ładunku protonu i elektronu obiegają Ziemię w przeciwnych kierunkach wytwarzając różnicę potencjału na krańcach magnetosfery (około 40 keV), która może się zmieniać po rozbłyskach i powodować indukcyjne przepływy prądu elektrycznego w jonosferze. Z tego powodu zorze bywają widywane częściej przed lokalną północą niż nad ranem.

Po intensywnych rozbłyskach na Słońcu zorze obserwowano również na średnich szerokościach geograficznych, w tym ponad Polską, ale również w okolicach równikowych. Zjawisko widywano także w dzień, oraz podczas prawie niezaburzonego magnetyzmu.

Wizualne zorze polarne obserwowane były na Jowiszu, a w innych zakresach widmowych na Saturnie, Uranie i Neptunie. W układzie Jowisza na rozciągłość przestrzenną tych zjawisk mają wpływ przepływy plazmy z jednego z księżyców galileuszowych. Zorze były wywoływane - co najmniej dwukrotnie - poprzez detonację ładunku jądrowego grzejącego jonosferę, co zostało skrytykowane przez ekologów. Aparatura amerykańskiego programu badawczego HAARP również wywołała sztuczną zorzę polarną na skutek podgrzania jonosfery falami elektromagnetycznymi w zakresie fal krótkich o dużej energii skupionymi na niewielkiej przestrzeni.

Zorze są obserwowane podczas burz jonosferycznych, a wysoka wówczas jonizacja powoduje zaburzenia w rozchodzeniu się fal radiowych, a nawet zupełny zanik.

Rozróżnia się typy systematyczne zórz: pasma, łuki, kurtyny, promienie, korony i inne. Stwierdzono emisje w zakresie barwy zielonej, żółtej i czerwonej, a bardzo często białe. Kolor zjawiska jest skutkiem różnej intensywności linii emisyjnych.

Kolor zorzy zależy również od określonego gazu. Na czerwono i na zielono świeci tlen, natomiast azot świeci w kolorach purpury i bordo. Lżejsze gazy - wodór i hel - świecą w tonacji niebieskiej i fioletowej[1].



Wyszukiwarka

Podobne podstrony:
Zjawisko parowania, Świetlica szkolna, zabawy badawcze
Ekstremalne zjawiska pogodowe wykłady
Smutek jesieni Pogoda i zjawiska pogodowe Klasa II
Niebezpieczne zjawiska pogodowe
Nazwy zjawisk pogodowych i atmosferycznych
Ściągi z fizyki-2003 r, Ogniswta kula,zjawisko świetlne
Tajemnicze zjawisko w galaktyce odległej o 10,7 mld lat świetlnych
Podmiotowa klasyfikacja zjawisk finansowych
Wyklad 7b Zjawisko indukcji magnetycznej
I Nowe Zjawiska
Zjawiska akustyczne
Psychologia osobowości dr Kofta wykład 4 Osobowość w świetle teorii uczenia sie
28 Zjawiska towarzyszące bombardowaniu ciała stałego elektro
ŚWIETLICA WIEJSKA W ŁUSZKOWIEGYUIO
Psychopatologia zjawisk społecznych
IV SA Wa 198 08 Wyrok WSA w Warszawie ws zakazu reklamy świetlnej
Środowisko programowe do symulacji zjawiska tunelowania

więcej podobnych podstron