Powszechnie stosowanym kodem dwójkowym niewagowym jest kod Graya, w którym sąsiednie słowa różnią się wartością tylko jednego bitu (tabl. 2.5).
Ważną odmianę kodów dwójkowych stanowią kody dwójkowo-dziesiętne BCD (ang. Binary Coded Decimal). W kodach tych poszczególne cyfry dziesiętne są przedstawione w kodzie dwójkowym. Do zakodowania dziesięciu cyfr potrzebne są co najmniej cztery bity, bo: 23 < 10 < 24. Sześć spośród szesnastu kombinacji kodu 4-bitowego nie będzie wykorzystanych.
Liczba możliwych kodów BCD, wynikająca z zastosowania 4 bitów, jest olbrzymia i wynosi:
Q16' „ ln\
10! = ~im ^.'10! = 2,9 1010, przy czym: I, I —symbol Newtona.
Spośród tej olbrzymiej liczby kodów, praktyczne zastosowanie znalazło tylko kilka z nich.
Kody dwójkowo-dziesiętne wagowe Tablica 2.6
Kod: |
Naturalny |
Aikena | ||||||||||||||||||
\ Wagi Cyfni\ |
8 |
4 |
2 |
1 |
2* 4 |
2 |
1 |
2 |
4 |
2 |
1 |
7 |
4 |
2 |
1 |
8 |
4- |
-2- |
-1 | |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
2 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
3 |
0 |
0 |
1 |
t |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
4 |
0 |
1 |
0 |
0. |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
5 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
6 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
7 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
8 |
t |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
9 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
t |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
Kody dwójkowo-dziesiętne niewagowe
Tablica 2.7
\ Kod: Cyfra\ |
Z nadmiarem 3 (4-3, plus 3, excess 3, XS3) |
Graya z nadmiarem 3 |
Wattsa |
Johnsona pseudopierście- niowy |
Wskaźników cyfrowych siedmiosegmentowych | |||||||||||||||||||
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
2 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
3 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
4 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
5 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
6 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
7 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
8 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
9 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |