ela5

ela5



tucn masy c.o.


TOK OBLICZEŃ Wf»iiKA MASY


Kuch masy c.s.


i Metoda wyz

I fcdnastes?


taczania    ńtasyza pomocą wyssfcgści

a oraz Ifesjw jgtlppgMt^niHanfeiaragy


Maksymalizacja oik


TOK OBLICZEŃ WYllrMMMASY 0, dZ/i


d/t =-


Podstawiamy wymienioną masę w liczniku obliczając ją z bilansu 'masówego I(ai AZ


Do rozwiązał różniczkowej

bilans mąst


ia tego zagadnienia należy użyć mgrisjąjętoafflM wyfflignpiką masy w formie ~m dla jednej z faz np. 1:


dm A =<2>| dZA

szybkość Btjzęniteinia masy: ^.ir , ..    dmA = lcAzdA(zA-ZAJ

oewisrzdtriia fcferyiał&j yfli5dzvfaz3Wfe8ć    d A = a F d h


gdzie: F - prz lm3 aparatu;

Przyrównan

■Koj* .

Wctiuww . %t, l^jdbUJWM/ ^ŁtA\ Rozdzielenie

/i = 0 do H\ o

CfttoU Volu.


ekrój poprzeczny pustego aparatu; a - powierzchnia wymiany masy (właściwa) v i h - różniczkowa wysokość.

ie, w ruchu masy ustalonym, przepływu masowego z obu równań do siebie:

COtA.    OEo(l'r • jć$l    a.-.v ./cL‘\'    •    (    *\

. CKJDj    'O \>-C>q£x . ęJUiU    dm-4 =<P{ dZA = kAz    dA [Z,    - ZA j

0v>    H-6 66'IO'1j • ^e,(\ o.ęe>- to ^ae *

zmiennych i całkowanie otrzymanego równania w granicach: wysot az stężenie ZA od ZA, do ZA,

‘"/o (\LCQjt , <W.<i    «7C    Au.Ct ■    1-CA.&

dr    |aV w U©\ui    W.O lk .    ćtO'uH*p OjCl^.

Ofjt.OOjp^ ^QjiV Mu. ^ =    ^ |    ^ X * , C<CV . 0)1^0.    ^

b^V'<cfijOirP    #CC^-) uc    1

n.nr^Otw.M^k)    .    t_

^0. ^ ^ Xj^0


AJA;* - ^OO W--U lk


&

OŚĆ h oc


Ve-£TH


Całkujemy r-nie otrzymując safeóWta

Całkujemy bilans masowy aby obliczyć całkowitą wymienioną masę:

Dodajemy r-nie, do którego dążymy w zamyśle:


dZr 1 kAz zz

•    2

'”.4 =ct>\ t dZ


.4 = 0, j-


Podstawiamy ^teyjtte..0pwleracbnię.wymiany.. masy oraz przyrównujemy do siebie prawe strony równań (masa):    .    .    ,    2

mA = [kA. [ZA -Z*A\t «0,j-—-jj—=0, ]AZA

1 * Az ^ A    l

Obliczamy średni iloczyn:    fi a* -ZA)l    jdZ,

kfc-sjL--!


0, j


dZ,


I & A



poto a&u + l<tto

4 Ruch masy c.d.


OifcE


^ - ąi0X .    .,

(Yai- Va^ ) ^ m U    t - l )

tok obliczeń wwirnnw umr


Ya« ^    ^ 0,02-0^

Ą- jjfr, Ą-OiGl.

V/Al -    =    =e>,oioi

Ruch masy c.d.


tok obliczeń wmsmmA MASY


Metoda wyznaczania %mgkaśsi fczyjnasi?^ wmlsnnika masy za 1 oraz imzb-? toane^ek.s^al^nj» masy


Maksymalizacja siły napętto^i fj^erakaTńa rnasy c-d. 1

Podstawiamy wymienioną masę w liczniku obliczając ją z bilansu imsmism


Można zapisać:

/•fi

gdzie: //0


]; 7V01=f


1Z7-Z7


• ilość


jednostek przenikania masy - analog siły napędowej


AW , c


Ą«J


//=


<pj ? ■ ^ ^

k Ą7 o. F j (z^ — Z .,


={^01 Afoi


Oraz analogicznie dla siły napędowej


(Ya.- Yai) ^co1^ (o,o»cv


' A -l - YAX. )


6(6 £ • iO' O


. )

OM. ic

k.^L i

4C

A^t

/aa -

YAt

, y,t-

V A

A V

A

óu-

VAl

-

Y*\

V, -

i Xt

- 5

^3 <GM-

ID" ^ VtOl*

h\ ■

K-ęj

A 1

(0(pft

4-0,01*

- 0L0i13



tjk - aAS •    2‘53' & 'O

. iM    Ot 0051 - o^ti    O    3

(aH)ov. - —    t- rmmx~T~ V|1'y

w I etTo TT* /

Równoczesny ruch ciepła masy


Najpewniejszym sposobem postępowania w takim przypadku jest zbudowanie takiego równania kinetyki rozpatrywanego procesu jednoczesnego ructu clsafe i jitasy aby rozpatrzyć oba procesy przebiegające obok siebie szeregowo lub równolegle oraz aby wpływ jednego procesu na drugi odwrotnie zostały w tym równaniu uwzględnione w zależnościach:

•    między współczynnikami wnikania efepta oraz masy lub

•    między siłami napędowymi ruchu dSBte oraz masy


oi* k = to^xA


JdZ


fZ7*) - ĄZa\-Za2) [ A A>m jdZ^ 2 dZ |

i [Z7-Za)

dla laaaTi rówaTłwatd według prawa Henry-ego (prostej):

f ;r    A7,) _ kc/ir    I - (fiA: AZ'0 2

gdzie: AZa^ sfa_a^t9^»wg lub:    ztZ<m =


ffjglaj.^a/o.erłOTyy ^    _ A/t^, - Att j2


ln A^a\ orzeaikamaa masy AZ Ai


in^di Aar,


ęUjbrroZZ "^Cj -fc- —> ros/Y\jJf

LrAc ^ Xąyy^    l^bGy


Ruch masy c.d.


TOK OBLICZEŃ MMEHHKAMA3Y


Maksymalizacja sin; napędowej przsmkama masy c-d.


i PYTANIE 1 - Dlaczego należy odsunąć lirsls ęęęrąęylrm od linii róymsmm poprzez 1 wzrost wartości tangensa nachylenia linii ssstasyjn&i ?


o ■ -    | <P>

Rośnie ren    —

^    U

Rośnie AS4m

— ZA-Z*A >0 lub lllb AZAm

s*a-sa >0

PYTANiE 2 - Gdzie leży granica wzrostu siły j napędowej?

Drzykład dla nrzeciworadu c.d.


Rośnie AS., lub AZ4

i '



Wyszukiwarka

Podobne podstrony:
ela4 <z>? fs fi tok obliczeń wmmmk ( , Po naniesieniu danych technoiogicz- —— Sa i + Za
ela2 II Ruch masy c.d.    tok obliczeń Dla aiaanikania masy ftlymam -1): oraz 3)
ela0 (YY^LA M -.5S0RPCJA tok obliczeń absorber i Przenikanie masy Zaprojektować absorber to obliczy
ela1 ABSORPCJA TOK OBLICZEŃ . lllEASJlABSORPCJA TOK OBLICZEŃ Wymiar poprzeczny aosopoara Mając
^Dokumentacja technicznad.    Tok obliczeniowy 9.    Obliczenie masy
o.d. Uwag (przebieg wypadków i ioh oblicze)fW II* Ściśle poufne 4/ ciel zasłużone} instytucji
obliczenie bledne ii <V ,") O-*lgrVMOO - Ą&ojb -*0U^- « zoo^> o
ela6 R.UCb masy C.d,    Równoczesny ruch csepta i masy c.d. Równania ogólne kinetyki
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Koszykówka KOD WF/II/st/27 2. KIERUNEK: Wychowanie
ScanImage001 1 Obliczanie p r a w cl o p o d o b i e ii s f w a Zadaniecr o* _S7    -
skanuj0001 (18) Tok obliczania przekładni pasowej z paskami klinowymi wg PN-66/M-8520I, PN-66/M-8520
50 I 8.    Przyczyną wystąpienia reakcji alergicznej ii typu może być: a. Przewlekły
50 (2) I 8.    Przyczyną wystąpienia reakcji alergicznej ii typu może być: a. Przewl

więcej podobnych podstron