Student namc:
Fields, Wave* & Antennas: Tw*t J. 2 April 2009
pl |
_ |
.gł_ |
-Pi ... |
p5 |
:JL |
_(1_ |
JLiz_ |
• J |
--r |
Nol»:
> Botd letters dcnotc vcct«>rs.
> Bold italle* dcnotc \ector variahles
'f Plcase specify iiitlts in all jotir answers'
> Intrinsic impcdancc of yaaturn 1 120 n Q; 3* 10^ m/s. r Maximuni nnmber of points for cach problem: 6.
Probiera I:
Given a magnetic field:
H » I, Ho cosj ni/-:/ v)J i. Hu sini oĄt - z i v)] |A/mJ
determine the elcctric field £ in losslcss non-magnetic didectric of £>=9, using the Maxwell equatinn<t M
piane wave propert ics!).
Find a retation between v and medium parameters.
Problem 2:
Consider an anisotropic medium with permcability given by a diagonal tensor, fixm 1, //,=4, fi.=I. Calculate the magnetic llcld H and an angle between H and B fields if B - iy B0 +i,B0
Problem 3:
Consider a homogeneous isotropic lossless medium. Can the following static magnetic field be generated in dus medium: /#(/, r) ~ //<, (i* siny + iy siar) {A/mj? By what means? Justify your answer by considering appropriatc Maxwełl equations.
Problem 4:
Calculate flux of vector .4 - i,.v + tr.r + i, (,v+2) through the surface of a cube with sidc </“2 and ceatrc at the origin of the coordinatc system. Use two methods: direct surface integration and Gauss theorem.
Problem 5:
Whioh cxpression(s) can describe electric field of a single piane wave (ar a superposition of several piane w*ves) travelling in a homogeneous isotropic medium without sources? Assume e=Eo and consider two cases regarding losses: land =0 and land =1.
a) £(l, r) = i, £o sin(tuf) sin (/i r).
b) E(r. r) * Isinfa* - fi, x)-ix £> sinftur - fi.2)
c) £(/, r) = i, £0sin(ox - fi,.t) -1, £1 sin(<ar - fi, x)
where £>. fi,, fi. - real numbers; fi, >0. fi->0. Justify your answers. Use piane wave properties to calculate the magnetic field. Specify relations between a;and fi,, fi-..