;-——■—■ r ‘ • 'y t J *■—! — «
Metody obliczeń geodezyjnych. BI.
1 Zmienna losowa X ma funkcję gęstości o następującej postaci: fc dla i€< 1,2> Vjce<3,4>
[0 dla pozostałych x
Naszkicuj wykres funkcji gęstości tej zmiennej. Wyznacz jej dystrybuantę i wartość oczekiwaną.
2. Zmienna X ma następujący rozkład prawdopodobieństwa:
Xj |
1 |
2 |
Pi |
0.6 |
0.4 |
Wyznacz rozkład Y oraz E(Y), V(Y) jeśli Y = 2X + X.
3. Dokonując aktualizacji mapy zasadniczej można było dowiązać się do 6 punktów osnowy trzeciej klasy, z których jeden ma błędnie wpisane współrzędne. W trakcie pomiarów wykorzystano tylko 4 takie punkty. Oblicz prawdopodobieństwo, że punkt z błędnymi współrzędnymi nie został wykorzystany do pomiarów.
4. Korzystając definicji wariancji oraz z własności wartości oczekiwanej, wyznacz wzór na wariancję za pomocą momentów początkowych.
0 |
1 | |
1 |
0,18 |
0,42 |
2 |
0,12 |
0,28 |
I