00155 ¼201ca32f381f34fdf319cbd394dfa2

00155 ¼201ca32f381f34fdf319cbd394dfa2



156


Simpson & Keats

Barnard, G. A., (1959) "Control Charts and Stochastic Processes," Journal of the Royal Statistical Society, B, 21(24), 239-271.

Brook, D. and Evans, D. A., (1972) "An Approach to the Probability Distribution of Cusum Run Length," Biometrika, 59, 539-549.

Chiu, W. K., (1974) "The Economic Design of Cusum Charts for Controlling Normal Means," Applications in Statistics, 23, 420-433.

Chiu, W. K. and Wetherill, G. B., (1974) "A Simplified Scheme for the Economic Design of X-bar Charts," Journal of Quality Technology, 6(2), 63-69.

von Collani, E., (1986) "A Simple ProcedurÄ™ to Determine the Economic Design of an X-bar Control Chart," Journal of Quality Technology, 18,3, 145-151.

Daniel, C., (1959) “Use of Half-Normal Plots in Interpreting Factorial Two Level Experiments,†Technometrics, vol. 1, pp. 311-342.

Del Castello, E., (1996) "An Algorithm and a Graphical Approach for the Economic Design of X Charts for Short Run Processes," Applications in Statistical Process Control, J. B. Keats and D. C. Montgomery, Marcel Dekker, New York.

Del Castello, E., Mackin, P. and Montgomery, D. C. (1994) "Multiple Criteria Optimal Design of X Control Charts," Arizona State University, Quality and Reliability Engineering Technical Paper, Department of Industrial and Management Systems Engineering.

Duncan, A. J., (1956) "The Economic Design of X-Charts Used to Maintain Current Control of a Process," Journal of the American Statistical Association, 51, 228-242.

Goel, A. L., (1968) “A Comparative and Economic Investigation of X and Cumulative Sum Control Charts,†Ph.D. Dissertation, University of Wisconsin, Madison, Wisconsin.

Goel, A. L. and Wu, S. M., (1973) "Economically Optimum Design of CUSUM Charts," Management Science, 19, 11, 1271-1282.


Wyszukiwarka

Podobne podstrony:
00135 ?0b8328312d99bc5a1f6952b3660550 136 Simpson & Keats Table 6. Example 1 Using Smali and La
00149 X58e44d67a8fa64ce25678ae9975d0f 150 Simpson & Keats Table 12. Shewhart and CUSUM Control
00121 ge08f5e71e20195f362e2605eea9911 122 Simpson & Keats by a trade-off analysis in the region
00123 ?c7966411ba3b5a68b0b64b1a493604 124 Simpson & Keats parameters may in some cases be diffi
00125 ?550c009f0c2a895872fcea22e14617 126 Simpson & Keats Yj T s k c the CUSUM value (xj - T)/s
00127 ?dfcc3570d2bc1727128e91fc004125 128 Simpson & Keats Table 1. Explanation of Model Terms S
00129 ?0dc7dd15a3eed19df820989269d0be 130 Simpson & Keats were expected cost per time unit, CUS
00131 48ab01b0a51c522dda8ce0feb6c2dd 132 Simpson & Keats significantly drive the cost response
00137 ?f8c690b843523daa85e27205605cc9 138 Simpson & Keats Table 7. Results of Yerification Test
00141 ?810fbac779efca768189e25cde7df8 142 Simpson & Keats Figures 2 and 3 present the same type
00145 bd64c30a9510b5eb82a95c582420bd 146 Simpson & Keats nonlinear optimization techniÄ…ue is a
00147 48eb0997542476033b79821e165047 14$ Simpson & Keats that minimizes expected hourly cost.
00151 ?ac5d664405d180127a449f8d3c8023 152 Simpson & Keats values of the ARLs. Table 15 shows th
00153 ?bcd5ddcd8a6a6f474478d1caafd0c2 154Simpson & Keats Table 15. Control Chart Design Statist
00157 ?aedd7cd4026aabb7ac11fe0418cad1 158 Simpson & Keats Page, E. S., (1954) “Continuous Inspe
00143 ?292850a8efe3a6fbe4c3a2b1090591 144 Simpson & Keats 1 10 100 1000 ARL (log scal*) FigurÄ™
00009 Y9a1cc25e268d620444b967b9a94375 8 Woodall & Faltin to briefly review some rather controve
00021 80eda6b328d385a75ba377310f280a 20 Woodall & Faltin Wetherill, G. B., and Brown, D. W. (1

więcej podobnych podstron