Scan Pic0083

Scan Pic0083



1 11 — = D, otrzymujemy —+— = D.

I ' *7^ sr f

Jeśli zatem x maleje, to D wzrasta.

Rozwiązanie zadania 5.30


Prawidłowa odpowiedź: D.

Jeśli promień po odbiciu jest całkowicie spolaryzowany, to oznacza to, że padał na powierzchnię graniczną pod kątem Brewstera.

W takim przypadku promień odbity tworzy z promieniem załamanym kąt prosty:

P2 + y = 90°.Wtedy również ar + p^ = 90°.

Korzystając z twierdzenia mówiącego, że kąty o ramionach odpowiednio prostopadłych są sobie równe, łatwo zauważyć, że kąt P2 między promieniem odbitym i powierzchnią odbijającą jest równy kątowi Pv A więc szukany kąt y jest równy kątowi padania ar.

Rozwiązanie zadania 5.31

Prawidłowa odpowiedź: A.


Jeśli promień odbity zostaje całkowicie spolaryzowany, to wiązka światła pada na powierzchnię cieczy pod kątem Brewstera. W takim przypadku

ar+/? = 90°.

Prawo załamania na granicy cieczy ma postać

sin ar

-= n.

sin/?

Podstawiając w miejsce ar kąt równy ar = 90° - /? otrzymujemy

sin(90-/?) cos P , „

-:—-— = ..    = n.

sm p    sm p

Rozwiązanie zadania 5.32 Prawidłowa odpowiedź: A.

Zacznijmy od obliczenia tangensa kąta padania ap, przy którym następuje całkowita polaryzacja światła odbitego. Posługując się rysunkiem z poprzedniego zadania zapiszemy prawo załamania światła na granicy powietrza i wody:

sina    r

-— = n = —,    przy czym a +/? = 90°.

sin/?    v    p

W powyższym wzorze c jest szybkością światła w próżni a v szybkością światła w wodzie. Podstawiając w miejsce/? kąt równy P = 90° - ap otrzymujemy

sina    sina    c

---=-— = tg a = —.

sin(90°-ap) cosap p v

Przy przejściu dowolnej fali (mechanicznej, elektromagnetycznej) z jednego ośrodka do drugiego jej częstotliwość i^nie ulega zmianie. W powietrzu długość fali /Łj jest równa

Ł =cT = —,

v

w wodzie zaś

A2 = vT = —. v

Obliczone z tych równań wartości c i v podstawiamy do prawa załamania otrzymując

JLm

Jeśli światło pada z wody do powietrza pod kątem granicznym, to prawo załamania przyjmuje postać:

V    i v

sin 90°


- = sina. mm&m —.

Podstawiając: v~    i c = A1v otrzymujemy

/^2 sma =-.

* S

- 165 -


Wyszukiwarka

Podobne podstrony:
» Teoria ... •    Jeśli mamy N liczb to nasze rozwiązani potrzebuje N-1
» Teoria ... •    Jeśli mamy N liczb to nasze rozwiązani potrzebuje N-1
» Teoria ... •    Jeśli mamy N liczb to nasze rozwiązani potrzebuje N-1
chądzyński1 98 6. FUNKCJE REGULARNE 98 6. FUNKCJE REGULARNE □ To kończy rozwiązanie. Zadanie 3. Pok
Scan Pic0080 obliczamy odległość y obrazu od zwierciadła i podstawiamy do równania zwierciadła. Otrz
Scan Pic0089 Zgodnie z teorią Einsteina (por. z zad. 6.11) pęd pf fotonu jest równy Podstawiając obl
IMAG0140 2 5)    uchyla się art. 10; 6)    art. 11 otrzymuje brzmienie
skanuj0037 Jeśli zatem w praktyce pracy socjalnej, pracownicy socjalni posługują się wiedzą hipotety
RZYM 100 -    Chcesz, żebym sobie poszedł, czy mam zostać? Już 11 mówiłem, że j

więcej podobnych podstron