275
LITERATURA
100. Sikorski K.: Algorytm bisckcji w przestrzeni R*. Praca magisterska na Wydz. Mat. UW. Patrz także: Math. of Contp., 1979, 33, s. 722-738.
101. Sluis van der A.: Condition number and cąuilibration of matrices. Numer. Math., 1969, 14, s. 14-23.
102. Smith B. T., Boyle J. M., Garbów B. S., Ikebe Y., Ki.kma V. C., Moler C. B.: Lec turę notes In Computer science, vol. 6. Matrbc Eigensystem Routines — E1SPACK Guide. 2 cd., Berlin. Springer 1976.
103. Stewart G. W.: The convcrgcncc of multipoint iterations to multiplc zeros. SI AM J. Num. Ano!., 1974, 11, s. 1105-1120.
104. Stewart B. W.: Introduction to Małrix Computations. New York, Academic Press 1973.
105. SntffL E.: Kernel polynomials in lincar algebra and their numcrical applications. NNS. Appl. Math. Senes, 1958, 49, s. 1-22.
106. Sioer J.: Wstęp do metod numerycznych. T. I. Warszawa, PWN 1979.
107. Stofr J.. Bulirsch R.: Wstęp do metod numerycznych. T. II. Warszawa, PWN 1980.
108. Strang B., hix G. J.: Ananalysis of the finite element method. Prentice-Hall, Englewood CliJfs, N. J., 1973, WyiL ros.: Mocna, Mnp 1977.
109. Swartztrauber P. N.: The methods of cyclic reduction, Fourier analysis and FACR algorithm for discrete solution of Poisson*s equalion on rcctangle. SJAM J. Repie w, 1977, 19, s. 490-501.
110. Temam R.: Numericui anlysls. Dordrech. Boston, D. Reiuel 1973.
111. Tewarson R. P.: Spar.se matrices. New York, Academic Press 1973. Wyd. ros.: Mocna, Map 1977.
112. TraUb J. K: Iterathte methods for the solution of eguations. Englewood Cliffs, N. J., Prertioc-Hall 1964.
113. Traub J. F., Kung H. T.: Optimal order of onc-point 3nd multipoint iteration. ACM, 1974, 21,4, s. 643-651.
114. Traub J. F., Woźniakowski H.: Converence and complexity of interpolatory-Newcon iteration in a Banach spacc. Corap. and Maths. with Appls.. 1980. 6. s. 384-400.
115. Traub J. F., Woźniakowski U.: Convergence and compleeily of Newton iteration for operator cąuations. J. of the ACM. 1979, 26, 2, s. 250-253.
116. Traub J. F., Woźniakowski H.: Optimal radius of converger.ce of interpolatory iterations for operator equalionx. Tech. Rep. Carnegłe-Mellon Unio., Dept. of C. S., 1976.
117. Traub J. F., Woźniakowski H.: Strict lower and upper bounds on iterativc computa-tional coraptocity. W: Analytic Computational Comp!exily. J. F. Traub (cd.). New York, Academic Press 1976, s. 15-34.
118. Vakga R. S.: Functional anałysh and approximat!on theory in numerlcal analylsis. Phila-dclphia, Soc. Ind. App. Math. 1971. Wyd. ros.: Mocna, Mcp 1974.
119. Wasilkowski G. W’.: Can any stationary iteration using lincar information be globaliy convergent? J. of the ACM, 1980, 27, 2, s. 263-269.
120. Wedin P. A.: Pcrturbation theory1 for pseudo-inverses. RIT, 1973. 13, s. 217-232.
121. Whiteman J. R.: A bibliography far finite elements. New York, Academic Press 1975.
122. Wilkinson J. H.: Some Reccnt Advanocs in Numcrical Lincar Algebra. W: {49);
123. Wilkinson J. H.: Błędy zaokrągleń w procesach algebraicznych. Warszawa, PWN* 1967.
124. Wilkinson J. H.: The Algebraic Eigemałue Problem. Oxford, Clarcndon Press 1965. Wyd. ros: Mociaia, FIayxa 1970.
125. Wilkinson J. H.: Error analysis of direct methods of ma tri* inversion. J. ACM, 1961, 8, s. 281-330.
126. Wilkinson J. H., Reznsch C.: Handbook for automatic computatlon, vol. //. Lincar Algebra. Berlin, Springer 1971. Wyd. ros.: Modcsa, Hayiea 1976.
127. Woodhouse D.: A notę on the secant method. BIT, 1975, 15, s. 323-327.