Imię IN-
STA TYSTYKA - ZIP MD / INF ZD
7. W teście zgodności y1 porównujemy ze sobą:
A. empiryczne i hipotetyczne wartości przecięhrc;
U. empiryczne i hipotetyczne wariancje; *
C. wskaźniki struktury w dwóch populacjach
D. empiryczne i hipotetyczne licznoścl w klasach szeregu rozdzielczego.
8. Na rysunku zostały przedstawione wykresy funkcji *
J |
k |
• \' |
< | |
1 |
rv l | |||
\.........7 |
X | |||
-1—4v | ||||
-V-- . i |
I c |
Gęstością rozkładu zmiennej losowej;
A. jest funkcja (a), (b) 1 (c); C. są wszystkie funkcje;
D. jest funkcja (a) i (c); D. nie jest żadna funkcja.
9. Współczynnik korelacji liniowej z próbki cech XI Y ma wartość bliską zero.
Oznacza to, że:
A. nic ma zależności liniowej miądzy cechami;
U. cechy są niezależne;
C. cechy nie są zależne;
D. cechy są silnie zależne liniowo.
Wartość oczekiwana I wariancja niezależnych zmiennych losowych X i Y są skończone. Dla zmiennej losowej Z «= 5X -3K + 4 parametry to wynoszą: (X) veZn5£Ar-3£y + 4 i'&,Z=25D,* + 9D,r;
D. EZ = 5EX -3£K \WZ«. 25D*X + 9D'Y;
' « •
C. V£Z = $EX-3EK + 4 i DłZ = 250** -9DJK 4-16;
D. uEZ = 5£r-32iK+4 i Z>,Z*5D,Jir-3D,K + 4.
11. Jeśli zwiększymy poziom istotności, to obszar krytyczny się:
A. nie zmieni; C. zwiększy;
n. zmniejszy; D. nie można określić.
12. Dane są zdarzenia: A - co najmniej jeden z 3 sprawdzanych wyrobów jest wybrakowany, B - wszystkie 3 wyroby są dobrej jakości. Prawdziwe jest zda-nic:
A. zdarzenia A i D' są przeciwne; ( n. zdarzenia (D'\A)u U' i A wykluczają się;
C. zdarzenie A'n B' jest zdarzeniem pewnym;
D. zdarzenie A\j(D\ A1) pociąga zdarzenie B\A .
13. Testem istotności weryfikujemy hipotezy-H*: m = 11, //,; m < 11 na poziomie istotności 0,05. Dla próbki 150 elementowej otrzymaliśmy wartość statystyki testowej 1,9. Wniosek jest następujący:
A. średnia wartość cechy w populacji jest mniejsza niż 11;
D. średnia wartość cechy w populacji nie różni się od 11 w sposób statystycznie istotny;
C. nic można weryfikować tych hipotez bez założenia o normalności rozkładu cechy w populacji;
D. odchylenie standardowe cechy w populacji jest mniejsze niż 11.
14. Każdy podzbiór zbioru zdarzeń elementarnych O jest zdarzeniem losowym, gdy:
A. przestrzeń O zdarzeń elementarnych jest zbiorem skończonym;
U. przestrzeń O zdarzeń elementarnych jest zbiorem co najwyżej przeliczalnym;
C. przestrzeń fi zdarzeń elementarnych jest zbiorem nieprzeliczalnym;
D. zawsze lak jest.
15. Prawdopodobieństwo lego, ze losowo wybrany punkt kwadratu {(jr.yjeR1:0£jr£l5, Oś y£l5) spełnia warunek jjr-y |< 5 wynosi:
A. |. c- i;
n. i; D.
OnRACOir.HA Joanna U i.v i.<