5.4.2. Macierze wstęgowe........................... 161
5.4.3. Wielkie układy liniowe....................... 164
5.4.4. Inne macierze rzadkie.......................... 166
5.5. Analiza błędów dla układów liniowych..................... 170
5.5.1. Przykład złego uwarunkowania..................... 170
5.5.2. Normy wektorów i macierzy....................... 171
5.5.3. Analiza zaburzeń............................ 173
5.5.4. Błędy zaokrąglenia w eliminacji Gaussa.................. 174
5.5.5. Skalowanie układów liniowych..................... 177
5.5.6. Ulepszanie itcracyjnc rozwiązania . . ................ 179
5.6. Metody iteracyjne.............................. 185
5.7. Układy liniowe nudokreśłonc........... 192
5.7.1. Równania normalne.......................... 193
5.7.2. Metody oriogonalizacji......................... 197
5.7.3. Ulepszanie rozwiązań średniokwadral owych................ 200
5.7.4. Zadaniu średniokwadratowc z ograniczeniami liniowymi .......... 201
5.8. Obliczanie wartości własnych i wektorów własnych .... 204
5.8.1. Metoda poięgowa................... 205
5.8.2. Mctcdy opuric na przekształceniach przez podobieństwo........... 207
5.8.3. Obliczanie wartości własnych z równania charakterystycznego......... 211
5.8.4. Algorytm QR............................. 212
Rozdział 6. Równania niełtnionc........................... 214
$gL Wstęp ................................... 214
6.2. Przybliżenia początkowe. Metody sianu..................... 214
6.2.1. Wstęp ...................... 214
6.2.2. Metoda bisekcji............................ 215
6.3. Metoda Newtona......... 217
6.4. Metoda siecznych.............................. 222
6A1. Opis metody ............................. 222
6.4.2. Analiza błędów dla metody siecznych................... 223
6.4.3. Reguła falsl.............................. 224
6.4.4. Inne podobne metody ......................... 225
6.5. Ogólna teoria metod iteracyjnych ........... 228
6.6. Szacowanie błędu i osiągalna dokładność w metodach Iteracyjnych......... 232
6.6.1. Szacowanie błędu .......................... 232
6.6.2. Osiągalna dokładność. Kryteria zakończenia............... 234
6.7. Pierwiastki wielokrotne........................... 236
6.8. Równania algebraiczne........................... 237
6.8.2. Defłacja ............................. 239
6.8.3. Źle uwarunkowane równania algebraiczne . . ..... ..... 240
6.9. Układy równań nieliniowych...... ......... .... 243
6.9-2. Metoda Newtona i jej tn*dyfikacjc..... ............ 244
6.9.3. Inne metody.............. 246
R ozdział 7. Różnice skończone w całkowaniu I różniczkowaniu minierycenrin oraz interpołacp . . 249
7.1. Operatory różnicowe i ich najprostsze -własności.....- ........... 249
7.2. Proste metody konstrukcji wzorów przybliżonych i oszacowań błędu.......257
7.2.1. Sformułowanie zadań i typowe przykłady................. 25?
7.2-2. Ekstrapolacja ilerowana Riehardsana...... 262