ÿþ"
f ( x ) = x c o s ( x - 1 ) ( 1 , f ( 1 ) )
s i n x
f ( x ) = ( 0 , f ( 0 ) )
x
"
x
f ( x ) = x ( 0 , f ( 0 ) )
"+
f ( x ) = l n x + 1 ( 0 , f ( 0 ) )
f ( x ) = ( - x 2 ) ( 1 , f ( 1 ) )
" "
f ( x ) = x 2 + 1 - 2 x 0 = 3
x 2
f ( x ) = ( 1 , f ( 1 ) )
2 x
"
"
f ( x ) = ( 1 + x ) l n x ( 1 , y 0 )
"
3
y = x 2 , y = x
" y = 3 - x
( x 0 , 3 )
"
3 x
f ( x ) = - 1
À
f ( x ) = 3 - x 2
3
x
2
f ( x ) = x
a b f ( x ) = - x 2 + a x + b
y = x ( - 1 , - 1 )
x 2
f ( x ) = 4 - x , g ( x ) = 4 -
2
s i n 2 1 1 o
c o s 2 0 9 o
0 , 9 9 9
3 1 , 9 8
"
3
f ( x ) = x x 0 = 8 R 4
f ( x ) = l n ( 1 + x ) x 0 = 0 R 3
l n 2 1 0 - 3
"1 ,
1 0 - 2
s i n 3 o 1 0 - 4
"
f ( x ) = 1 + x R 5
"
2
f ( x ) = s i n 2 x R 4
s i n 2 1
5
"
n
f ( x ) = 1 + x R 4
3 3
2
" x
5
1 + x H" 1 + 0 <