Lab. 3. Zagadnienie dualne i algorytm simplex
2. Mając rozwiązanie zagadnienia pierwotnego - patrz tabela - skonstruuj wydruk z rozwiązaniem dla zagadnienia do niego dualnego.
Decision Variabłe |
Solution Value |
Unit Cost ar Profit c(j) |
Total Cantribution |
Reduced Cost |
Basis Status |
Allawable Min c0) |
Allawable Max. c(j) | |
1 |
XI |
0 |
0,9 |
0 |
-0,5667 |
atbaund |
-M |
1,4667 |
2 |
X2 |
20.000 |
2,2 |
44.000 |
0 |
basie |
1.8 |
M |
3 |
X3 |
0 |
1.2 |
0 |
-0,2667 |
atbaund |
-M |
1,4667 |
Objective |
Functian |
(Max.) = |
44.000 | |||||
Left Hand |
Right Hand |
Slack ar |
Sbadaw |
Allawable |
Allawable | |||
CuasLram t |
Side |
Directian |
Side |
Surpłus |
Price |
Min. RHS |
Min RHS | |
1 |
Cl |
160.000 |
80.000.000 |
79.840.000 |
0 |
160.000 |
M | |
2 |
C2 |
600.000 |
£ |
600.000 |
0 |
0,0733 |
0 |
600.000 |
3 |
C3 |
400.000 |
< |
600.000 |
200.000 |
0 |
400.000 |
M |
4 |
C4 |
1.200.000 |
1.200.000 |
0 |
0 |
1.200.000 |
M | |
5 |
C5 |
60.000 |
<, |
300.000 |
240.000 |
0 |
60.000 |
M |
6 |
C6 |
20.000 |
VI VI |
400.000 |
380.000 |
0 |
20.000 |
M |
Decision Variable |
Solution Value |
Unit Cost ar Profit cfi) |
Tatal Cantribution |
Reduced Cost |
Basis Status |
Allawable Min c(j) |
Allawable Max. c(j) | |
1 |
Y1 | |||||||
Objective |
Functian |
(......) = | ||||||
Cunstrain t |
Left Hand Side |
Directian |
Right Hand Side |
Slack ar Surpłus |
Shadnw Price |
Allawable Min. RHS |
Allawable Min RHS | |
1 |
Cl |
1