ÿþ S N y : B i o t e c h n o l o g i a S t u d e n c k i e N o t a t k i C y f r o w e w w w . s n y . o n e . p l
F i z y k a I w i c z e n i a
n o t a t k i z e s t u d i ó w
n a k i e r u n k u B i o t e c h n o l o g i a
n a W y d z i a l e C h e m i c z n y m
P o l i t e c h n i k i W r o c Ba w s k i e j
A u t o r :
M a t e u s z J d r z e j e w s k i
m a t e u s z . j e d r z e j e w s k i @ o n e . p l
w w w . j e d r z e j e w s k i . o n e . p l
W r o c Ba w , 2 0 0 6
S N y : B i o t e c h n o l o g i a
S p i s t r e [c i
I n f o r m a c j e o k u r s i e _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 3
Z E S T A W 1 W e k t o r y _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4
Z E S T A W 2 K i n e m a t y k a _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 2
Z E S T A W 3 R u c h o b r o t o w y _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 8
Z E S T A W 4 D y n a m i k a _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2 4
K o l o k w i u m I Z a d a n i a _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2 9
Z E S T A W 5 P r a c a , e n e r g i a , m o c _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 3 7
Z E S T A W 6 S p r \y s t o [, p d _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 5
Z E S T A W 7 D y n a m i k a r u c h u o b r o t o w e g o _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 5 0
K o l o k w i u m I I Z a d a n i a _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 5 6
Z E S T A W 8 R u c h d r g a j c y _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 6 1
Z E S T A W 9 E l e k t r o s t a t y k a _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 6 7
Z E S T A W 1 0 M a g n e t y z m _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 7 4
K o l o k w i u m I I I Z a d a n i a _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 8 3
S N y : B i o t e c h n o l o g i a
W s t p
o t a t k a j e s t c z [c i p r o j e k t u S N y ( S t u d e n c k i e N o t a t k i
N
C y f r o w e ) . N o t a t k i s s a m o d z i e l n i e s p o r z d z a n e
i o p r a c o w y w a n e p r z e z s t u d e n t ó w P o l i t e c h n i k i . U d o s t p n i a n e
s w I n t e r n e c i e . K a \d y m o \n e z n i c h k o r z y s t a d o w o l i
w c e l a c h e d u k a c y j n y c h .
a k o n k r e t n a n o t a t k a d o t y c z y k u r s y F Z C 1 0 0 3 c , c z y l i
T
w i c z e D d o w y k Ba d ó w z F i z y k i I . N o t a t k a z a w i e r a
p r z y k Ba d o w e o p r a c o w a n i e s z k i c ó w r o z w i z a D d o z e s t a w ó w
z a d a D. N i e s t o w i c p e Bn e r o z w i z a n i a d o z a d a D.
Z a d a n i a p o c h o d z z l i s t o m a w i a n y c h n a w i c z e n i a c h o r a z
z k o l o k w i ó w . S z k i c e b d , w m i a r m o \l i w o [c i , o p a t r y w a n e
d o d a t k o w y m i r y s u n k a m i i k o m e n t a r z a m i .
w a g a n a b Bd y ! M i m o s t a r a n n o [c i j a k w Bo \y l i a u t o r z y
U
w o p r a c o w a n i e t e j n o t a t k i m o g z d a r z y s i b Bd y .
K a \d y w i c k o r z y s t a z t y c h m a t e r i a Bó w n a w Ba s n
o d p o w i e d z i a l n o [. W s z e l k i e z a u w a \o n e b Bd y p r o s z
z g Ba s z a a u t o r o w i n o t a t k i ( n a j l e p i e j d r o g e l e k t r o n i c z n ) .
[y c z w s z y s t k i m s k u t e c z n e g o k o r z y s t a n i a z n o t a t e k .
M a t e u s z J d r z e j e w s k i
( a u t o r s t r o n y w w w . s n y . o n e . p l )
S z c z e g ó Bo w e i n f o r m a c j e o n o t a t c e
N a z w a p l i k u : e - n o t a t k a - F i z y k a I - c w i c z e n i a . p d f
N a z w a k u r s u : F i z y k a I ( F Z C 1 0 0 3 C )
P r o w a d z c y k u r s : d r E l \b i e t a B r o n i e k
S e m e s t r / r o k : 0 6 z ( r o k 1 , I s e m e s t r )
K i e r u n e k : B i o t e c h n o l o g i a
W y d z i a B: W y d z i a B C h e m i c z n y
U c z e l n i a : P o l i t e c h n i k a W r o c Ba w s k a
A u t o r n o t a t k i : M a t e u s z J d r z e j e w s k i
S t a t u s : n i e p e Bn a
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 3
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 0
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : I n f o r m a c j e o k u r s i e . Z m o d y f i k o w a n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 0
I n f o r m a c j e o k u r s i e
N a z w a k u r s u : F i z y k a I w i c z e n i a
K o d k u r s u : F Z C 1 0 0 3 C
P r o w a d z c y : d r E l \b i e t a B r o n i e k
K o n s u l t a c j e : c z w a r t k i , g o d z i n y 1 1 : 1 5 - 1 5 : 0 0 , b u d . F - 3 p o k . 2 3 3 ( p o k . 2 2 8 ) ,
P r z e b i e g z a j : l i s t y z a d a D d o s t p n e s n a s t r o n i e h t t p : / / a r . c h . p w r . w r o c . p l
W a r u n k i z a l i c z e n i a : z a l i c z e n i e ( m i n i m u m 5 0 % p k t . ) w s z y s t k i c h t r z e c h k o l o k w i ó w
k o l o k w i u m I : 3 l i s t o p a d a 2 0 0 6 r .
k o l o k w i u m I I : 8 g r u d n i a 2 0 0 6 r . ( e w e n t u a l n i e 1 g r u d n i a 2 0 0 6 r . )
k o l o k w i u m I I I : 1 2 s t y c z n i a 2 0 0 7 r .
k o l o k w i u m p o p r a w k o w e ( z c a Bo [c i ) : 1 9 s t y c z n i a 2 0 0 7 r .
i n f o r m a c j e d o d a t k o w e : n a k o l o k w i a c h m o \n a u \y w a k a l k u l a t o r ó w
w a \n e : z a l i c z e n i e k o l o k w i ó w z w i c z e D j e s t w a r u n k i e m K O N I E C Z N Y M
d o p r z y s t p i e n i a d o e g z a m i n u z F i z y k i I . T e n e g z a m i n b d z i e w f o r m i e
t e s t o w e j z u j e m n y m i p u n k t a m i z a b Bd n o d p o w i e d z ( 0 , 2 5 p k t . ) .
P r z e l i c z a n i e o c e n n a p u n k t y ( m a k s i m u m t o 6 0 p k t . ) :
o d 3 0 p k t . 3
o d 3 6 p k t . 3 , 5
o d 4 2 p k t . 4
o d 4 8 p k t . 4 , 5
o d 5 4 p k t . 5
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 4
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 1
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : Z E S T A W 1 W e k t o r y . Z m o d y f i k o w a n a : 1 . 1 1 . 2 0 0 6 1 9 : 2 3
Z E S T A W 1 W e k t o r y
6 . 1 0 . 2 0 0 6 r .
S Bo w n i c z e k
k o l i n e a r n y r ó w n o l e g By ,
o r t o g o n a l n y p r o s t o p a d By ,
w e k t o r j e d n o s t k o w y w e k t o r o d Bu g o [c i 1 ,
w e r s o r w e k t o r j e d n o s t k o w y r ó w n o l e g By d o j e d e n z o s i u k Ba d w s p ó Br z d n y c h i m a j c y
t e n s a m z w r o t c o o n a .
D a n e s d w a w e k t o r y
r r
u = [ u x , u y ] v = [ v x , v y ]
D Bu g o [ w e k t o r a
r
u = u x 2 + u y 2
K t p o m i d z y w e k t o r e m a d a n o s i w s p ó Br z d n y c h
u y
u x r r
= c o s "( u , O X ) = c o s "( u , O Y )
r r
u u
I l o c z y n s k a l a r n y
r r r r r r r r
u Å"v = u Å" v Å"c o s "( u , v ) u Å"v = u x Å" v x + u y Å"u y
w i c :
r r r r
u Å"v = 0 Ô! u ¥" v
I l o c z y n w e k t o r o w y
r r r r r r
u × v = u Å" v Å"s i n "( u , v )
w i c :
r r r r
u Å"v = 0 Ô! u v
z a d . 1 .
D a n e : A ( - 1 , 0 , 3 ) , B ( 0 , - 2 , 5 ) ,
r r r r r
S z u k a n e : a = A B , a = ? , "( a , O X ) = ? , "( a , O Y ) = ? , "( a , O Z ) = ? ,
r r
n = ? ( w e k t o r j e d n o s t k o w y k o l i n e a r n y d o a i o z w r o c i e p r z e c i w n y m ) ,
v
a = [ 0 - ( - 1 ) , - 2 - 0 , 5 - 3 ] = [ 1 , - 2 , 2 ]
v
a = 1 2 + ( - 2 ) 2 + 2 2 = 9 = 3 = a
a x r r a x
= c o s "( a , O X ) Ò! "( a , O X ) = a r c o s
a a
r a x 1
"( a , O X ) = a r c o s = a r c o s H" 7 0 , 5 °
a 3
a y
r - 2
"( a , O Y ) = a r c o s = a r c o s H" 1 3 1 , 8 °
a 3
r a z 2
"( a , O Z ) = a r c o s = a r c o s H" 4 8 , 2 °
a 3
r r
w e k t o r m ( j e d n o s t k o w y i k o l i n e a r n y ) d o w e k t o r a a
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 5
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 1
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : Z E S T A W 1 W e k t o r y . Z m o d y f i k o w a n a : 1 . 1 1 . 2 0 0 6 1 9 : 2 3
r
îø
r a a x a y a z ùø
m = = , ,
r
ïø úø
a a a a
ðø ûø
r 1 - 2 2
îø ùø
1 2 2
m = , , = [ , - , ]
3 3 3
ïø3 3 3 úø
ðø ûø
r r
w e k t o r n j e s t p r z e c i w n y d o w e k t o r m
r r
n = - m
r
1 2 2 1 2 2
n = - [ , - , ] = [ - , , - ]
3 3 3 3 3 3
z a d . 2 .
D a n e : &
r
S z u k a n e : a = ? ,
x 1 = 0 k m
ñø
òø
= - 3 , 5 k m
óøy 2
1
ñø
2
ôøx = 8 , 2 k m Å" H" 5 , 8 k m
2
òø
ôøy 2 = 8 , 2 k m Å" 1 2 H" 5 , 8 k m
óø
x 1 =
ñø - 1 5 k m
òø
= 0 k m
óøy 2
r
2 2
a = ( 0 + 5 , 8 - 1 5 ) + ( - 3 , 5 + 5 , 8 + 0 ) H" 9 , 4 8 k m
z a d . 3 .
D a n e : r 1 = 1 5 0 c m , ±1 = 1 2 0 ° , r w = 1 4 0 c m , ±w = 3 5 ° ,
r
S z u k a n e : r 2 = ? ,
r r r
r w = r 1 + r 2
r r r
r 2 = r w - r 1 = [ r w c o s ±w , r w s i n ±w ] - [ r 1 c o s ±1 , r 1 s i n ±1 ]
r
r 2 = [ 1 4 0 c o s 3 5 ° - 1 5 0 c o s 1 2 0 ° , 1 4 0 s i n 3 5 ° - 1 5 0 s i n 1 2 0 ° ] H" [ 1 8 9 , 7 ; - 4 9 , 6 ]
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 6
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 1
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : Z E S T A W 1 W e k t o r y . Z m o d y f i k o w a n a : 1 . 1 1 . 2 0 0 6 1 9 : 2 3
z a d . 4 .
r
r
D a n e : a = ( 3 , - 4 , 4 ) , b = ( 2 , 3 , - 7 ) ,
r r
r r
S z u k a n e : c = ? , d = ? , "( c , d )
r
r r
c = a + b = [ 3 + 2 , - 4 + 3 , 4 - 7 ] = [ 5 , - 1 , - 3 ]
r r
r
d = 2 a - b = [ 2 Å" 3 - 2 , 2 Å" ( - 4 ) - 3 , 2 Å" 4 + 7 ] = [ 4 , - 1 1 , 1 5 ]
r r r
r r r
c o d = c Å" d Å"c o s "( c , d )
r
r
r
c x Å" d x + c y Å" d y + c z Å" d z
r c o d
c o s "( c , d ) = r = r
r r
c Å" d c Å" d
r
c = c x 2 + c y 2 + c z 2 = 5 2 + ( - 1 ) 2 + ( - 3 ) 2 H" 5 , 9 2
r
d = d x 2 + d y 2 + d z 2 = 4 2 + ( - 1 1 ) 2 + 1 5 2 H" 1 9 , 0 3
r
c x Å" d x + c y Å" d y + c z Å" d z
r
"( c , d ) = a r c c o s r
r
c Å" d
r
r 5 Å" 4 + ( - 1 ) Å"( - 1 1 ) + ( - 3 ) Å"1 5
"( c , d ) H" a r c c o s
5 , 9 2 Å"1 9 , 0 3
r
r - 1 4
"( c , d ) H" a r c c o s H" 9 7 , 1 °
1 1 2 , 6 6
z a d . 5 .
r r r r
D a n e : F 1 = 5 , F 2 = 8 , "( F 1 , F 2 ) = 1 2 0 °
r
S z u k a n e : F w = ? ,
n i e c h p u n k t P b d z i e w ( 0 , 0 ) ,
r
n i e c h w e k t o r F 1 b d z i e k o l i n e a r n y o o s i O X , a j e g o z w r o t z g o d n y z t o s i .
r r r
F w = F 1 + F 2 = [ F 1 + F 2 c o s 1 2 0 ° , F 2 s i n 1 2 0 ° ] H" [ 1 ; 6 , 9 3 ]
r
F w = F w = F w x 2 + F w y 2 H" 1 2 + 6 , 9 3 2 H" 7
z a d . 6 .
r
r r
D a n e : a ( 1 , - 1 ) , b ( 4 , 3 ) , c ( - 1 0 , - 1 1 ) ,
S z u k a n e : x , y ,
r
r r
c = x Å" a + y Å"b
c x = x Å" a x + y Å"b x
ñø
òøc = y Å" a y + y Å"b y
y
óø
ñø- 1 0 = x + 4 y
òø- 1 1 = - x + 3 y
óø
- 2 1 = 7 y Ò! y = - 3
x = 3 y + 1 1 Ò! x = - 3 Å"3 + 1 1 = 2
r
r r
c = 2 a + 3 b
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 7
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 1
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : Z E S T A W 1 W e k t o r y . Z m o d y f i k o w a n a : 1 . 1 1 . 2 0 0 6 1 9 : 2 3
z a d . 7 .
r
r
D a n e : a , b ,
r
r
S z u k a n e : "( a , b ) = ? ,
r
W e k t o r a l e \y n a d w u s i e c z n e j k t a m i d z y o s i a m i O X i O Y , w i c j e g o p o s t a
r
m o \e b y n a s t p u j c a : a = [ 1 , 1 , 0 ] .
r
W e k t o r b l e \y n a d w u s i e c z n e j k t a m i d z y o s i a m i O Y i O Z , w i c j e g o p o s t a
r
m o \e b y n a s t p u j c a : b = [ 0 , 1 , 1 ] .
r r r
r r r
a o b = a Å" b Å"c o s "( a , b )
r
a = 1 2 + 1 2 + 0 2 = 2
r
b = 0 2 + 1 2 + 1 2 = 2
r
r
r
r a o b 1 Å"0 + 1 Å"1 + 0 Å"1 1
"( a , b ) = a r c c o s = a r c c o s = a r c c o s = 6 0 °
r
r
2
2 Å" 2
a Å" b
z a d . 8 .
r
r
D a n e : a ( 2 , 1 , 1 ) , b ( 1 , - 1 , 2 ) ,
r r
S z u k a n e : a b = ? , a ¥"b = ? ,
r
a = 2 2 + 1 2 + 1 2 = 6
r
b = 1 2 + ( - 1 ) 2 + 2 2 = 6
r r r
a b = a b Å" n b
r
r b îø 1 1 2 ùø
n b = r = , - ,
ïø úø
6 6 6
b ðø ûø
r
r r
a b
r r r r
= c o s "( a , b ) Ò! a b = a Å"c o s "( a , b )
r
a
r
r
r r r r
r r r r a o b
a o b = a Å" b Å" c o s "( a , b ) Ò! c o s "( a , b ) = r
r
a Å" b
r
r
r
a x b x + a y b y + a z b z
r r r r r a o b r r
a b = a Å"c o s "( a , b ) Å" n b = a Å" r Å" n b = r Å" n b
r
a Å" b b
r 2 Å"1 + 1 Å"( - 1 ) + 1 Å" 2 r 3 îø 1 1 2 ùø
1 1
a b = Å" n b = Å" , - , = [ , - , 1 ]
2 2
ïø úø
6 6 6 6 6
ðø ûø
r
1 1
a b = [ , - , 1 ]
2 2
r
2 2
6
1 1
a b = ( ) + ( - ) + 1 2 =
2 2 2
2 2
r r r r r r
2 2
6 3 2
a ¥"b = a - a b Ò! a ¥"b = a - a b = 6 - ( ) =
2 2
r r r r
3 2
a ¥"b = a ¥"b Å" n ¥"b = Å" n ¥"b
2
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 8
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 1
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : Z E S T A W 1 W e k t o r y . Z m o d y f i k o w a n a : 1 . 1 1 . 2 0 0 6 1 9 : 2 3
r
w i e m , \e w e k t o r n ¥"b = [ x , y , z ] s p e Bn i a n a s t p u j c e w a r u n k i :
r r
r r r r
ñøn ¥"b o b = n ¥"b Å" b Å"c o s "( n ¥"b , a b )
ôør r r r
r r
ôøn o a = n ¥"b Å" a Å"c o s "( n ¥"b , a )
òø
¥"b
r
ôø
n ¥"b = 1
ôø
óø
r r
"( n ¥"b , a b ) = 9 0 ° Ò! c o s 9 0 ° = 0
r
a b 2 6
r r 1 r r
c o s "( a , a b ) = = = Ò! "( a , a b ) = 6 0 °
r
a 2
6
r r r r r r
"( n ¥"b , a ) = "( n ¥"b , a b ) - "( a , a b )
r r
3
"( n ¥"b , a ) = 9 0 ° - 6 0 ° = 3 0 ° Ò! c o s 3 0 ° =
2
r r
r
r r
r
ñøn ¥"b o b = n ¥"b Å" b Å"c o s 9 0 ° ñøn ¥"b o b = 0
ôør r r r
r
ôøn o a = n ¥"b Å" a Å"c o s 3 0 ° Ò! ôør o a = 1 Å" 6 Å" 3
ôøn
òø òø
¥"b ¥"b 2
r
ôø ôøx + y 2 + z 2 = 1 2
2
n ¥"b = 1
ôø
ôø
óø
óø
x Å"b x + y Å"b y + z Å"b z = 0
ñø
x
ñø - y + 2 z = 0
ôø
ôø
òøx Å" a x + y Å"a y + z Å" a z = 3 2 Ò! òø2 x + y + z = 3 2
2 2
ôø ôøx + y 2 + z 2 = 1
2
2
óø
óøx + y 2 + z 2 = 1
2 z = y
ñø - x 2 z = y 2 z = y
ñø - x
ñø - x
ôø ôø ôø
òø4 x + 2 y + 2 z = 3 2 Ò! òø4 x + 2 y + y - x = 3 2 Ò! òø3 x + 3 y = 3 2
ôøx + y 2 + z 2 = 1 ôøx + y 2 + z 2 = 1 ôøx + y 2 + z 2 = 1
2 2 2
óø óø óø
2
ñøy = 2 - y + 2 z ñø -
y = x + 2 z z = y
ñø
2
ôø
ôø
ôøx = 2 - y Ò! ôø = 2 - y
ôøx
òøx = 2 - y Ò! òø òø
ôøx + y 2 + z 2 = 1 ôøx + y 2 + z 2 = 1 ôøx + y 2 + z 2 = 1
2 2 2
ôø ôø
óø
óø óø
2 2
ñø - z = y
ñø -
z = y
2 2
ôø ôø
ôøx = 2 - y ôøx
Ò! = 2 - y
òø òø
ôø ôø2 - 2 2 y + y 2 + y 2 + y 2 - y 2 + 1 = 1
2
2
2
ôø( 2 - y ) + y 2 + ( y - ) = 1 ôø
2
óø 2 óø
1
2 - 2 2 y + y 2 + y 2 + y 2 - y 2 + = 1
2
3 2
3 y 2 - 3 2 y + = 0 / Å"
2 3
2 y 2 - 2 2 y + 1 = 0
" = 8 - 8 = 0
- 2 2 2
y = - =
4 2
2
ñø -
z = y
z = 0
ñø
2
ôø
ôø r
ôøx = 2 - y Ò! = 2 Ò! n ¥"b = 2 , 2 , 0 ]
[
òø òøx
2 2 2
ôøy = 2 ôøy = 2
ôø
2 óø 2
óø
r r r r
3 2 2 2 3 3
a ¥"b = a ¥"b Å" n ¥"b Ò! a ¥"b = Å"[ , , 0 ] = [ , , 0 ]
2 2 2 2 2
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 9
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 1
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : Z E S T A W 1 W e k t o r y . Z m o d y f i k o w a n a : 1 . 1 1 . 2 0 0 6 1 9 : 2 3
z a d . 9 .
D a n e : A ( 2 , 0 ) , B ( 1 , 3 ) , C ( - 5 , 1 ) ,
r
S z u k a n e : n = ? ,
r
a = B A = [ 2 - 1 , 0 - 3 ] = [ 1 , - 3 ]
a = 1 2 + ( - 3 ) 2 = 1 0
r
b = B C = [ - 5 - 1 , 1 - 3 ] = [ - 6 , - 2 ]
b = ( - 6 ) 2 + ( - 2 ) 2 = 2 1 0
r
n = [ n x , n y ]
r
r r r
c o s ± = c o s "( n , a ) = c o s "( n , b )
r
r r r
ñøn o a n o b
=
ôø
n Å" a n Å"b
òø
r
ôø
n = n = 1
óø
n x Å"a x + n y Å" a y n x Å"b x + n y Å"b y
ñø
=
ôø
1 Å" a 1 Å"b
òø
ôø
n x 2 + n y 2 = 1
óø
n x Å"1 + n y Å"( - 3 ) n x Å"( - 6 ) + n y Å"( - 2 )
ñø
=
ôø
1 Å" 1 0 1 Å" 2 1 0
òø
ôøn 2 + n y 2 = 1
x
óø
( n x
ñø - 3 n y ) = - 6 n x - 2 n y
ôø2
òø
2 2
ôø
óøn x + n y = 1
ñø
y
ôøn = 2 n x
òø
2 2
ôø ( 2 n x ) = 1
+
óøn x
ñø
y
ôøn = 2 n x Ò! ñø = 2 n x Ò! ñøn y = ± 2 1
ôøn y ôø 5
òø òø òø
2
1
1
ôø = 1 ôø
ôø
óø5 n x 5
óøn x = ± 5
óøn x = ±
r
1 1
n = [ - , - 2 ] H" [ - 0 , 4 4 7 ; - 0 , 8 9 4 ]
5 5
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 1 0
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 1
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : Z E S T A W 1 W e k t o r y . Z m o d y f i k o w a n a : 1 . 1 1 . 2 0 0 6 1 9 : 2 3
z a d . 1 0 .
r
D a n e : a = ( 3 , 6 , 8 ) ,
r
S z u k a n e : n = ? ,
r r r r
n ¥" a Ô! n o a = 0
r r r
n ¥" O X Ô! n ¥" î Ô! n o i Æ = 0
î = [ 1 , 0 , 0 ]
r
ñø n = 1
ôør r
òøn o a = 0
r
ôøn o î = 0
óø
ñø
n x 2 + n y 2 + n z 2 = 1
ôø
ôø
òøn Å" a x + n y Å" a y + n z Å" a z = 0
x
ôøn Å"1 + n y Å"0 + n z Å"0 = 0
x
ôø
óø
ñø
n x 2 + n y 2 + n z 2 = 1
2 2 2 2
ñø ñø
+ n z = 1 + n z = 1
ôø
ôøn y ôøn y
Ò!
òø3 n + 6 n y + 8 n z = 0 Ò! òø òø
x
4
ôø
ôøn = 0
óø6 n y + 8 n z = 0 ôø = - 3 n z
óøn y
x
óø
4 9
ñø ñø ñø
( - n z ) 2 + n z 2 = 1 n z 2 = n z = ± 0 , 6
3 2 5
ôø ôø ôø
Ò! = - n z Ò! = m 0 , 8
òøn = - 4 n z òøn 4 òøn
y 3 y 3 y
ôøn = 0 ôøn = 0 ôøn = 0
óø x óø x óø x
r r
n = [ 0 ; - 0 , 8 ; 0 , 6 ] l u b n = [ 0 ; 0 , 8 ; - 0 , 6 ]
z a d . 1 1 .
r
r r
D a n e : a = ( 1 , 2 , 1 ) , b = ( 2 , - 1 , 2 ) , c = 2 ,
r
S z u k a n e : c = ? ,
r r r
c = c Å" n
r r r r r r
c ¥" a Ô! n ¥" a Ô! n o a = 0
r r
r r
n ¥" b Ô! n o b = 0
r
ñø n = 1
ôør r
òøn o a = 0
r
r
ôøn o b = 0
óø
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 1 1
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 1
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : Z E S T A W 1 W e k t o r y . Z m o d y f i k o w a n a : 1 . 1 1 . 2 0 0 6 1 9 : 2 3
ñø
n x 2 + n y 2 + n z 2 = 1
ôø
ôøn Å" a x + n y Å"a y + n z Å" a z = 0
òø
x
ôøn Å"b x + n y Å"b y + n z Å"b z = 0
x
ôø
óø
ñø ñø
n x 2 + n y 2 + n z 2 = 1 n x 2 + n y 2 + n z 2 = 1
ñø
n x 2 + n z 2 = 1
ôø ôø
ôø
Ò! = - n z
òø1 Å"n + 2 Å" n y + 1 Å" n z = 0 Ò! òøn = - 2 Å"n y - n z òøn
x x x
ôø2 Å" n x - 1 Å" n y + 2 Å" n z = 0 ôø- 4 Å"n y - 2 Å" n z - n y + 2 Å" n z = 0 ôøn = 0
y
óø
óø óø
1
2
ñø
n z = ±
ñø
( - n z ) + n z 2 = 1
2
ôø
ôø
Ò! = m
òøn = - n z òøn 1 2
x x
ôøn = 0 ôøn = 0
y
óø y
óø
r
1 1
n = [ ± , 0 , m ]
2 2
r r
v v v
c = c Å" n Ò! c = [ 1 , 0 , - 1 ] l u b c = [ - 1 , 0 , 1 ]
z a d . 1 2 .
a )
r
r
D a n e : a = ( 1 , 2 , 3 ) , b = ( 0 , - 2 , 5 ) ,
S z u k a n e : P = ? ( p o l e r ó w n o l e g Bo b o k u ) ,
2 2
2
r
a y a z a x a y
a z a x
r
P = a × b = + +
b y b z b x b y
b z b x
2 2 2
P = ( a y b z - a z b y ) + ( a z b x - a x b z ) + ( a x b y - a y b x )
2 2 2 2 2
P = ( 2 Å"5 - 3 Å" ( - 2 ) ) + ( 3 Å"0 - 1 Å"5 ) + ( 1 Å"( - 2 ) - 3 Å"0 ) = 1 6 2 + ( - 5 ) + ( - 2 ) = 2 8 5
b )
D a n e : A ( 1 , - 1 , 3 ) , B ( 0 , 2 , - 3 ) , C ( 2 , 2 , 1 ) ,
S z u k a n e : P = ? ( p o l e t r ó j k t a ) ,
r
a = A B = [ 0 - 1 , 2 - ( - 1 ) , - 3 - 3 ] = [ - 1 , 3 , - 6 ]
r
b = A C = [ 2 - 1 , 2 - ( - 1 ) , 1 - 3 ] = [ 1 , 3 , - 2 ]
r
r
2 2 2
1 1
P = a × b = ( a y b z - a z b y ) + ( a z b x - a x b z ) + ( a x b y - a y b x )
2 2
2 2 2
1
P = ( 3 Å"( - 2 ) - ( - 6 ) Å"3 ) + ( - 6 Å"1 - ( - 1 ) Å"( - 2 ) ) + ( - 1 Å"3 - 3 Å"1 )
2
2 2
1 1 1 2 4 4
P = 1 2 2 + ( - 8 ) + ( - 6 ) = 2 4 4 = 2 4 4 = = 6 1
2 2 4 4
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 1 2
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 3
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : Z E S T A W 2 K i n e m a t y k a . Z m o d y f i k o w a n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 3
Z E S T A W 2 K i n e m a t y k a
1 3 . 1 0 . 2 0 0 6 r .
P r z y s p i e s z e n i e
r
a w e k t o r p r z y s p i e s z e n i e c a Bk o w i t e g o ,
a w a r t o [ p r z y s p i e s z e n i a c a Bk o w i t e g o ,
r
a n w a r t o [ p r z y s p i e s z e n i a n o r m a l n e g o ( p r o s t o p a d Be g o d o v ) ,
r
a s w a r t o [ p r z y s p i e s z e n i a s t y c z n e g o ( r ó w n o l e g Be g o d o v ) ,
r r r
a = a n + a s
a 2 = a n 2 + a s 2
v 2
a n = R p r o m i e D k r z y w i z n y t o r u ,
R
t o p r z y s p i e s z e n i e w p By w a n a z m i a n k i e r u n k u p r d k o [c i ,
d v
a s = d v p r d k o [ c h w i l o w a ,
d t
t o p r z y s p i e s z e n i e w p By w a n a z m i a n w a r t o [c i p r d k o [c i ,
z a d . 1 .
D a n e : x ( t ) = 2 + 3 t - 4 t 2 ,
S z u k a n e : t z = ? ( c z a s z a w r a c a n i a ) , a = ? , v ( x ( t = 0 ) ) = ? ,
x ( t ) = 2 + 3 t - 4 t 2
d x
v ( t ) = = 3 - 8 t b o ( a x n ) 2 = a n x n - 1
d t
d v
a ( t ) = = - 8
d t
w i c j e s t t o r u c h j e d n o s t a j n i e o p ó zn i o n y
3
v ( t z ) = 0 Ò! 3 - 8 t z = 0 Ò! t z = [ s ]
8
2
3 3
x ( t z ) = 2 + 3 Å" - 4 Å"( ) H" 2 , 5 6 [ m ]
8 8
x ( t = 0 ) = 2
3
2 = 2 + 3 t - 4 t 2 Ò! 0 = t ( 3 - 4 t ) Ò! t = 0 [ s ] (" t = [ s ]
4
3 3
v ( t = ) = 3 - 8 Å" = - 3 [ m ]
4 4 s
z a d . 2 .
D a n e : v ( t ) = 4 0 - 5 t 2 ,
S z u k a n e : a [r = ? ( w p r z e d z i a l e 0 - 2 s e k . ) , a ( t = 2 ) = ? ,
v ( t ) = 4 0 - 5 t 2
d v
a ( t ) = = - 1 0 t
d t
a ( t = 0 ) = 0
a ( t = 2 ) = - 2 0
a ( t = 0 ) + a ( t = 2 ) 0 - 2 0
a [r = = = - 1 0
2 2
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 1 3
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 3
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : Z E S T A W 2 K i n e m a t y k a . Z m o d y f i k o w a n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 3
z a d . 3 .
m m
D a n e : H = 5 0 m , v 0 = 2 0 , t D = 5 s , g = 9 , 8 1
s
s 2
S z u k a n e : t B = ? , y ( t B ) = ? , t C = ? , v ( t C ) = ? ,
v ( t D ) = ? , x ( t D ) = ? , t E = ? ( c z a s c a Bk o w i t y ) , v ( t E ) = ? ,
1
y ( t ) = y 0 + v 0 t - g t 2
2
v y ( t ) = v 0 - g t
a )
v 0 2 0
v y ( t B ) = 0 Ò! 0 = v 0 - g t B Ò! t B = H" H" 2 , 0 4 s
g 9 , 8 1
b )
1
y ( t B ) = v 0 t B - g t 2
2
2
ëø öø
v 0 1 v 0 v 0 2 v 0 2 v 0 2
y ( t B ) = v 0 - g ìø ÷ø = - =
2
ìø ÷ø
g g g 2 g 2 g
íø øø
v 0 2 2 0 2
y ( t B ) = H" = 2 0 , 4 m
2 g 2 Å" 9 , 8 1
c )
y ( t C = 0 ) = 0
1
v 0 t C - g t C 2 = 0
2
1
t C ( v 0 - g t C ) = 0
2
2 v 0 2 Å" 2 0
t C = 0 (" t C = H" H" 4 , 0 8 s
g 9 , 8 1
m
v ( t C ) = v 0 - g t C H" 2 0 - 9 , 8 1 Å" 4 , 0 8 = - 2 0
s
d )
1
y ( t D ) = v 0 t D - g t D 2
2
1
y ( t D ) H" 2 0 Å"5 - Å"9 , 8 1 Å"5 2 H" - 2 2 , 6 m
2
v ( t D ) = v 0 - g t D
m
v ( t D ) H" 2 0 - 9 , 8 1 Å"5 = - 2 9
s
e )
y ( t E ) = - H = - 5 0 m
1
- H = v 0 t E - g t E 2
2
g t E 2 - 2 v 0 t E - 2 H = 0
" = 4 v 0 2 + 8 g H
" = 2 v 0 2 + 2 g H
2 v 0 + 2 v 0 2 + 2 g H v 0 + v 0 2 + 2 g H
t E > 0 Ò! t E = =
2 g g
2 0 + 2 0 2 + 2 Å"9 , 8 1 Å"5 0 2 0 + 3 7 , 1 6
t E H" H" H" 5 , 8 3 s
9 , 8 1 9 , 8 1
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 1 4
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 3
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : Z E S T A W 2 K i n e m a t y k a . Z m o d y f i k o w a n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 3
f )
v y ( t E ) = v 0 - g t E
v 0 + v 0 2 + 2 g H
v y ( t E ) = v 0 - g Å"
g
v y ( t E ) = v 0 - v 0 - v 0 2 + 2 g H
v y ( t E ) = - v 0 2 + 2 g H
m
v y ( t E ) H" - 2 0 2 + 2 Å"9 , 8 1 Å"5 0 H" - 3 7 , 2
s
z a d . 4 .
r
D a n e : r ( 1 8 t , 4 t - 4 , 9 t 2 ) ,
S z u k a n e : v 0 = ? , ± = ? , v ( t = 2 ) = ? ,
v H = ? ( p r d k o [ w n a j w y \s z y m p u n k c i e t o r u ) ,
r x = x ( t ) = 1 8 t
r y = y ( t ) = 4 t - 4 , 9 t 2
x ( t ) = v x t
0
v x = v x = c o n s t .
0
d x
v x ( t = 0 ) = v x = = 1 8 [ m ]
s
0
d t
v y ( t ) = v y - g t
0
d y
v y ( t = 0 ) = v y = = 4 - 9 , 8 t = 4 [ m ]
s
0
d t
r
v = [ v x , v y ]
0 0
v 0 = v x 2 + v y 2 = 1 8 2 + 4 2 = 1 8 , 4 [ m ]
s
0 0
v x = v 0 c o s ±
0
v y = v 0 s i n ±
0
v y v y
4
0 0
t g ± = Ò! ± = a r c t g = a r c t g H" 1 2 , 5 °
v x v x 1 8
0 0
w n a j w y \s z y m p u n k c i e t o r u v y = 0
r
v H = [ v x , v y ] = [ v x , 0 ] = [ 1 8 , 0 ]
0
v H = 1 8 2 + 0 2 = 1 8 [ m ]
s
t = 2 s
r
v = [ v x , v y ] = [ 1 8 ; 4 - 9 , 8 t ] = [ 1 8 ; 4 - 9 , 8 Å" 2 ] = [ 1 8 ; - 1 5 , 6 ]
v = 1 8 2 + ( - 1 5 , 6 ) 2 H" 2 3 , 8 [ m ]
s
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 1 5
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 3
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : Z E S T A W 2 K i n e m a t y k a . Z m o d y f i k o w a n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 3
z a d . 5 .
m
D a n e : ± = 3 0 ° , v 0 = 2 0 [ m ] , H = 4 5 m , g = 9 , 8 1 [ s ]
2
s
S z u k a n e : t c = ? , v k = ? , a s = ? ( w c h w i l i t = 0 , 5 s ) ,
z = ? ( z a s i g o d l e g Bo [ z p o z i o m i e p r z e b y t a p r z e z k a m i e D) ,
a )
v y = v 0 s i n ± = 2 0 s i n 3 0 ° = 1 0 [ m ]
s
0
v x = v x = v 0 c o s ± = 2 0 c o s 3 0 ° H" 1 7 , 3 2 [ m ]
s
0
1
y = H + v y t c - g t c 2
2
0
0 = 4 5 + 1 0 t c - 4 , 9 0 5 t c 2
" = 1 0 0 + 8 8 2 , 9 = 9 8 8 , 2
" H" 3 1 , 3 5
1 0 + 3 1 , 3 5
t c > 0 Ò! t c = H" 4 , 2 1 s
2 Å" 4 , 9 0 5
b )
v x = c o n s t . H" 1 7 , 3 2
v y = v y - g t c
0
v y H" 1 0 - 9 , 8 1 Å" 4 , 2 1 H" - 3 1 , 3
v k = v x 2 + v y 2 H" 1 7 , 3 2 2 + ( - 3 1 , 3 ) 2 H" 3 5 , 8 [ m ]
s
c )
m
v x = c o n s t . H" 1 7 , 3 2
s
z = v x t c
z H" 1 7 , 3 2 Å" 4 , 2 1 H" 7 3 m
d )
d v
a s =
d t
v = v x 2 + v y 2 = v x 2 + ( v y - g t ) 2
0 0
d v x 2 + ( v y - g t ) 2
2 ( v y - g t ) Å" g g Å" ( v y - g t )
0 0
0 0
a s = = =
d t
2 v x 2 + ( v y - g t ) 2 v x 2 + ( v y - g t ) 2
0 0 0 0
1
b o ( x ) 2 = { f [ g ( x ) ] } 2 = f ' [ g ( x ) ] Å" g ' ( x )
2 x
t = 0 , 5
9 , 8 1 Å"( 1 0 - 9 , 8 1 t ) 9 , 8 1 Å"( 1 0 - 9 , 8 1 Å"0 , 5 ) 4 9 , 9 8
m
a s ( t ) = = = H" 2 , 7 7 [ s ]
2
1 7 , 3 2 2 + ( 1 0 - 9 , 8 1 t ) 2 1 7 , 3 2 2 + ( 1 0 - 9 , 8 1 Å"0 , 5 ) 2 1 8 , 0 5
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 1 6
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 3
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : Z E S T A W 2 K i n e m a t y k a . Z m o d y f i k o w a n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 3
z a d . 6 .
m
D a n e : v 0 = 7 , 5 5 [ m ] , t = 0 , 5 s , g = 9 , 8 1 [ s ]
2
s
S z u k a n e : v = ? , a s = ? , a n = ? ,
v x = v 0 = c o n s t .
x ( t ) = v 0 Å"t
v y ( t ) = - g t
1
y ( t ) = - g t 2
2
d v
a s =
d t
v = v x 2 + v y 2 = v 0 2 + ( - g t ) 2 = v 0 2 + g 2 t 2
d v 0 2 + g 2 t 2 v y
2 g 2 t g t
a s = = = g = g
d t
2 v 0 2 + g 2 t 2 v 0 2 + g 2 t 2 v
1
b o ( x ) 2 = { f [ g ( x ) ] } 2 = f ' [ g ( x ) ] Å" g ' ( x )
2 x
t = 0 , 5
g 2 t 9 , 8 1 2 Å"0 , 5 4 8 , 1 1 8
m
a s ( t ) = H" = H" 5 , 3 4 [ s ]
2
7 , 5 5 2 + 9 , 8 1 2 Å" 0 , 5 2 9 , 0 0 3
v 0 2 + g 2 t 2
a n 2 = g 2 - a s 2
2
v y 2 g 2 v 2 - g 2 v y 2 g
g
a n = g 2 - a s 2 = g 2 - g 2 = = v 2 - v y 2 = v x 2 + v y 2 - v y 2
v 2 v 2 v v
g g v 0
a n = v x 2 + v y 2 - v y 2 = v x 2 = g
v v v
v 0 9 , 8 1 Å"7 , 5 5 7 4 , 0 6 5 5
m
a n ( t ) = g H" H" H" 8 , 2 3 [ s ]
2
7 , 5 5 2 + 9 , 8 1 2 0 , 5 2 9 , 0 0 3 4
v 0 2 + g 2 t 2
z a d . 7 .
D a n e : R = 3 , 6 4 m v = 1 7 , 4 [ m ] , ± = 2 2 ° ,
s
S z u k a n e : a c = ? , a s = ?
a c 2 = a n 2 + a s 2
v 2 1 7 , 4 2
a n = = H" 8 3 , 1 7 6
R 3 , 6 4
r r r
± = "( a c , R ) a" "( a c , a n )
a s
m
t g ± = Ò! a s = a n Å" t g ± Ò! a s H" 8 3 , 1 7 6 Å"0 , 4 0 4 H" 3 3 , 6 [ s ]
2
a n
m
a c = a n 2 + a s 2 H" 8 3 , 1 7 6 2 + 3 3 , 6 2 H" 8 9 , 7 [ s ]
2
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 1 7
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 3
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : Z E S T A W 2 K i n e m a t y k a . Z m o d y f i k o w a n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 3
z a d . 8 .
m
D a n e : R = 0 , 2 m a s = 0 , 0 5 , ± = 2 2 ° ,
s 2
S z u k a n e : a s = a n Ò! t 1 = ? , 2 a s = a n Ò! t 2 = ? ,
a )
a n = a s
v 2
a n = Ò! v = a n Å" R
R
a n Å" R
v
v = a s Å" t Ò! t = =
a s a s
a n Å" R a s Å" R
R 0 , 2
t 1 = = = = = 2 s
a s a s a s 0 , 0 5
b )
1
a n = 2 a s Ò! a s = a n
2
a n Å" R 2 a s Å" R
2 R 2 Å"0 , 2
t 2 = = = = H" 2 , 8 3 s
a s a s a s 0 , 0 5
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 1 8
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 4
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : Z E S T A W 3 R u c h o b r o t o w y . Z m o d y f i k o w a n a : 1 . 1 1 . 2 0 0 6 1 8 : 4 0
Z E S T A W 3 R u c h o b r o t o w y
2 0 . 1 0 . 2 0 0 6 r .
P o r ó w n a n i e w z o r ó w w r u c h u o b r o t o w y m i p o s t p o w y m
r u c h o b r o t o w y r u c h p o s t p o w y
R p r o m i e D
S d Bu g o [ Bu k
S
x p o Bo \e n i e ,
Õ k t
Õ = [ r a d ]
( s d r o g a )
R
d Õ r a d d x m
îø ùø îø ùø
É p r d k o [ k t o w a É = v =
v p r d k o [
ïø úø ïø úø
d t s d t s
ðø ûø ðø ûø
v = É Å" R
d É r a d d v m
µ p r z y s p i e s z e n i e îø ùø a s p r z y s p i e s z e n i e îø ùø
µ = a s =
2
ïø ïøs úø
k t o w e
d t s 2 úø s t y c z n e d t
ðø ûø ðø ûø
a s = µ Å" R
a n p r z y s p i e s z e n i e
v 2 m
îø ùø
a d =
2
ïøs úø
n o r m a l n e ( d o [r o d k o w e )
R
ðø ûø
a d = É2 Å" R = É Å"v
d l a r u c h u j e d n o s t a j n i e z m i e n n e g o
1 1
Õ = Õ0 + É0 t + µt 2 x = x 0 + x 0 t + a t 2
2 2
É = É0 + µt v = v 0 + a t
z a d . 1 .
r r
D a n e : t = 4 s , "( a s , v ) = 5 8 ° = ± ,
S z u k a n e : µ = ? ,
D l a r u c h u j e d n o s t a j n i e z m i e n n e g o p r a w d z i w e j e s t : É = µt
v 2
2
2
a d = = É2 R = ( µt ) R = µ t 2 R
R
a s = µR
2
a d µ t 2 R t g ± îø ùø
r a d
t g ± = = = µt 2 Ò! µ =
a s µR t 2 ïø s 2 úø
ðø ûø
t g 5 8 ° 1 , 6 r a d
îø ùø
µ = H" = 0 , 1
ïø úø
4 2 1 6 s 2
ðø ûø
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 1 9
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 4
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : Z E S T A W 3 R u c h o b r o t o w y . Z m o d y f i k o w a n a : 1 . 1 1 . 2 0 0 6 1 8 : 4 0
z a d . 2 .
D a n e : R = 2 0 c m = 0 , 2 m , ¸( t ) = 3 - t + 0 , 1 t 3 [ r a d ] ( t w s e k . ) , t = 1 0 s ,
S z u k a n e : a s = ? , a n = ? ,
d ¸
É = = 0 , 3 t 2 - 1 b o ( a Å" x n ) 2 = a Å" n Å" x n - 1 c z y l i ( 3 - t 1 + 0 , 1 t 3 ) 2 = 1 Å"3 0 - 1 Å"t 0 + 0 , 1 Å"3 Å"t 2
d t
d É
µ = = 0 , 6 t b o ( a Å" x n ) 2 = a Å" n Å" x n - 1 c z y l i ( 0 , 3 t 2 - 1 ) 2 = 0 , 3 Å" 2 Å"t 1 - 1 Å"1 0
d t
µ( t ) = 0 , 6 t µ( t = 1 0 ) = 0 , 6 Å"1 0 = 6
m
îø ùø
a s = µR = 6 Å"0 , 2 = 1 , 2
2
ïøs úø
ðø ûø
2 2 m
îø ùø
a d = É2 R = ( 0 , 3 t 2 - 1 ) R = ( 0 , 3 Å"1 0 2 - 1 ) Å"0 , 2 = 1 6 8 , 2
2
ïøs úø
ðø ûø
P r z y s p i e s z e n i a d l a p u n k t ó w l e \c y c h , n p . w p o Bo w i e p r o m i e n i a l i c z y s i t a k s a m o .
1
2
R = R = 0 , 1 m
2
2
2 2 2 2 2
a s ( R ) = 6 Å" R a d ( R ) = ( 0 , 3 Å"1 0 2 - 1 ) Å" R = 8 4 1 Å" R
m m
îø ùø îø ùø
2 2
a s ( R ) = 6 Å"0 , 1 = 0 , 6 a d ( R ) = 8 4 1 Å"0 , 1 = 8 4 , 1
2 2
ïøs úø ïøs úø
ðø ûø ðø ûø
z a d . 3 .
m m
D a n e : v 1 = 3 , v 2 = 2 , "R = 1 0 c m = 0 , 1 m
s s
S z u k a n e : n = ? ( n p r d k o [ o b r o t o w a ) ,
2 1 É
É = = = 2 n Ò! n =
T f 2
v
É = = c o n s t . Ò! É1 = É2
R
v 1 v 1 v 1
É1 = Ò! R = Ò! R =
R É1 É
v 2 v 2 v 2 v 1
É2 = Ò! É = Ò! É = Ò! Éëø - "R öø = v 2
ìø ÷ø
v 1
R - "R R - "R É
íø øø
- "R
É
v 1 v 1 - v 2 3 - 2 r a d
îø ùø
É - É"R = v 2 Ò! É = = = 1 0
ïø úø
É "R 0 , 1 s
ðø ûø
É 1 0 o b r .
îø ùø
n = = H" 1 , 5 9
ïø úø
2 2 s
ðø ûø
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 2 0
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 4
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : Z E S T A W 3 R u c h o b r o t o w y . Z m o d y f i k o w a n a : 1 . 1 1 . 2 0 0 6 1 8 : 4 0
z a d . 4 .
D a n e : µ = 3 , 5 [ r a d ] , t = 0 s Ò! É0 = 2 [ r a d ] ,
s
s 2
S z u k a n e : Õ( t = 2 s ) = ? , É( t = 2 s ) = ? , "Õ = ? ,
1
Õ = Õ0 + É0 t + µt 2
É = É0 + µt
2
3 , 5
Õ( t ) = 2 t + t 2 É( t ) = 2 + 3 , 5 t
2
r a d
3 , 5
É( 2 ) = 2 + 3 , 5 Å" 2 = 9 [ ]
Õ( 2 ) = 2 Å" 2 + Å" 2 2 = 1 1 [ r a d ]
s
2
"Õ = Õ( 3 ) - Õ( 2 )
3 , 5
Õ( 3 ) = 2 Å"3 + Å"3 2 = 2 1 , 7 5 [ r a d ]
2
Õ( 2 ) = 1 1 [ r a d ]
"Õ = Õ( 3 ) - Õ( 2 ) = 2 1 , 7 5 - 1 1 = 1 0 , 7 5 [ r a d ]
z a d . 5 .
D a n e : t = 3 s , h = 1 , 5 m , R = 4 c m = 0 , 0 4 m ,
S z u k a n e : µ = ? ,
1
D l a r u c h u j e d n o s t a j n i e z m i e n n e g o p r a w d z i w e j e s t : x = x 0 + v 0 t + a t 2
2
W i a d o m o , \e v 0 = 0 o r a z z a Bó \m y , \e x 0 = 0 w t e d y :
1
h = a t 2 b o x = h
2
2 h
a =
t 2
P r z y s p i e s z e n i e s t y c z n e o b r a c a j c e g o s i k r \k a j e s t r ó w n e p r z y s p i e s z e n i u s p a d a j c e g o
m a Be g o o d w a \n i k a b o t e n d w a c i a Ba t p o Bc z o n e l e k k n i e r o z c i g l i w n i c i .
a s = a a = µ Å" R
2 h
a s =
t 2
a s 2 h 2 Å"1 , 5 r a d
îø ùø
µ = = = = 8 , 3 3
ïø úø
R R t 2 0 , 0 4 Å"3 2 s 2
ðø ûø
z a d . 6 .
m
D a n e : R = 0 , 1 m , N = 5 Ò! v 1 = 0 , 1 , t 2 = 2 0 s ,
s
S z u k a n e : a n = ? ,
Õ = 2 N
1 1
Õ = É0 + µt 2 = µt 2
2 2
4 N
1
2 N = µt 1 2 Ò! µ =
2
t 1 2
v = a s Å"t
v 1
v 1 = a s Å"t 1 Ò! t 1 =
a s
S t u d e n c k i e N o t a t k i C y f r o w e
S N y : B i o t e c h n o l o g i a
w w w . s n y . o n e . p l s n y @ s n y . o n e . p l S t r o n a 2 1
U t w o r z o n a : 2 9 . 1 0 . 2 0 0 6 1 6 : 4 4
N o t a t k a : F i z y k a I ( F Z C 1 0 0 3 C ) w i c z e n i a .
T e m a t : Z E S T A W 3 R u c h o b r o t o w y . Z m o d y f i k o w a n a : 1 . 1 1 . 2 0 0 6 1 8 : 4 0
4 N a s 2 v 1 2
a s = µ Å" R = R = 4 R N Ò! a s =
4 R N
t 1 2 v 1 2
v 2 = a s Å"t 2
v 2 2 a s 2 Å"t 2 2 t 2 2 v 1 4 t 2 2 v 1 4 Å"t 2 2
a n = = = a s 2 Å" = Å" =
2 2
R R R 1 6 R 2 N R 1 6 R 3 N
v 1 4 Å"t 2 2 0 , 1 4 Å" 2 0 2 0 , 0 4
m
a n = = H" H" 0 , 0 1 [ s ]
2
2
1 6 Å" R 3 Å" N 1 6 Å"0 , 1 3 Å"5 2 3 , 9 5
z a d . 7 .
r a d
D a n e : É0 = 1 , 4 4 , N = 4 2 , 3 Ò! É = 0 , µ = c o n s t . µ <