ÿþ
R ‚" X × Y
S = { ( y , x ) " Y × X : ( x , y ) " R }
S = R - 1
X Y Z R ‚" X × Y
S ‚" Y × Z "R )"
D S = "
R S
S æ% R : = { ( x , z ) : "y " Y ( x , y ) " R '" ( y , z ) " S } .
A ‚" X R ‚" X × Y
R ( A ) = { y " Y : "x " A ( x , y ) " R }
B ‚" Y R ‚" X × Y
R - 1 ( B ) = { x " X : "y " B ( x , y ) " R }
R ‚" X 2
"x " X : [ x ] R = "
S
[ x ] R = X
x "X
[ x ] )" [ y ] = " = Ò! [ x ] = [ y ]
R × R
S = { ( x , y ) : y = 2 x + 3 }
T = { ( x , y ) : y d" - x 2 - 2 }
U = { ( x , y ) : y e" l o g 2 x }
f g
f ( x ) = - 3 x + 4 g ( x ) = 5 x + 1
f ( x ) = x 2 g ( x ) = - x
f ( x ) = - x 2 - 3 g ( x ) = l o g 3 x
"
À
f ( x ) = a r c t g x + g ( x ) = x - À
2
S ‚" X 2
S Ð!Ò! S - 1
S ‚" X × Y T ‚" Y × Z ( "S )" D T = ")
S T = Ò! T æ% S
R ‚" X × Y
X ‚" R , Y ‚" R
x R y Ð!Ò! x 2 - y 2 = 1
x R y Ð!Ò! 3 + y = l o g 2 ( x + 1 )
x R y Ð!Ò! y = x 2 - 4
S ‚" R × R S ( A ) S - 1 ( B )
3
S = { ( x , y ) : y = | x 2 - 2 | } A = ( - 2 , 1 ) B = 1 ,
2
S = ( x , y ) : y = | l o g 1 x | A = ( - 2 , 1 ) B = 1 , 2 )
2
"
"
À 3
S = ( x , y ) : y = | a r c t g x + | A = ( - 3 , - )
4 3
x 1
a r c c o s <