r-£
(3 liours)
N.B. (1) Qucstion no. 1 is Coinpulsory
(2) Solvc any thrcc from the rcmoining. i)(a) If 5 sinh x - cosh x = 5 fmd tanhx .
(b) If u n e' * " * ' prove that
d'u
dxCydz
•- $xyzu .
(c) If u =--—, v ^ tan ' x + tan ' y find ^ .
\-xy 0(x,y)
(d) By Maclaurins scrics cxpand log (l 4 <rł) in powcrs of x uplo .
! sfŹ Ol
I
I
X
(3)
(3)
(3)
(3)
(f) Find the «' derivative of y
or
(x+ 2)(2.v + 3)
(a) Solve xf - i t i and find the cominued produet o1‘the rools.
(b) Find the nonsińgular matrices P and Q such that PAQ is in norma! form also
fmd the rank of A
T2 1 |
4 1 |
X» |
2! to i i |
1 7 4 i | |
t' 0 |
6 j |
(c) State and provo Euler*s theorcm for homogencous functions on tlirce variab!cs.
a) Invcstigatc for what values of A and u the eouations
x + y + z = 6,.v + 2y i 3a - i o, x + 2y i Az - // havc i) no Solutions, ii) a uniąiic solution. iii) infinite number of Solutions.
b) Find the stationar>' valucsof / (.v, y) = x2 + xy1 + 2\x-l2x* -2y *
:) If sin [O + i$) - cos a + i sin u Prove that cos* 0 s i r.? a sinh'tf
Page 1 of 2
2D18KCKC
(8)