8290614312

8290614312



7. Opublikowane badania własne

flO


I OrzPl el ot / Talanla 101 (2012) 7»-64

Rrigtal    CaBc*nlrallaa|fflg - L'ł|

.SYI24

0

0

0

U 2

2

2

4

4

5

5

S

7

7

7

9

9 10 10 10

SRI*

0

2

3

10 0

%

7

K

0

5

10

0

7

3

N O 5 10

Laboralory

rcpllcatei

Technlcal

rrplicatcs



|    ..*41

S

I

I

4.SI

JS»    ' -

4SJ łJO ft««

Eiotifcon |nm)

Eacrtjftion |m|

T

i.

Eliota bor |nrr|


Eiolflhon |nmj

Hf. 1. Df sifn of thf oiptrimtnt with mprci to conctnfrjtions of j mjrlrn campound (Sokrm Yellow 124. SY124) and j dye cofnpmmd (Solvf nt Rfd 19. SR 19X

the excitation modę and the emission modę. E(] x JK) is the error matrijL The symbol |&| denotes the Khatri Rao product |20J.

The construction of triads is optimized in order to maximize the covariance between H and y. Calibration models are con-stmcted using the new variables. A morę detailed description of the N-PLS method can be found In (19],

2.5. The complexity of regression models


data and PLS models with increasing complexity are built for the remaining samples (a model set). Then. a prediction is performed for the removed samples based on the model seL The procedurę is repeated for the next subset of p objects removed from the data. while all possible subsets are not considered when validating the models with an increasing complexity. The root mean square error of cross-validation. RMSECV, is calculated as a measure of the modePs performance using the following equation:


(4)


The number of new variables (factors) used for the modePs construction is called the complexity of the model./. To determine the optimal complexity a cross-validation procedurę is usually used (211. At each step of the va!idation procedurę either a sample or a subset of p samples (a validation set) is removed from the


RMSECYtf) =


where y.t is the f-th experimental value of the response variab!e removed during the cross-validation procedurę. y_nft is the i-th


Strona 65



Wyszukiwarka

Podobne podstrony:
7. Opublikowane badania własne Chłmomnra and Inwlligtm Ubcrjtcry Systems 110 ( 2012) 69 96 CM(«*o«fn
7. Opublikowane badania własne 7. Opublikowane badania własne B4 J. Onet et ol / Totonfo tOI (2012)
7. Opublikowane badania własne / One! et of. / falonro 138 (2015) S4-70 rcsponse variable. and y, is
7. Opublikowane badania własne HUKI l Onel *1 oi / Talonie    (2015 J S4-20 300
7. Opublikowane badania własne
7. Opublikowane badania własne
7. Opublikowane badania własne 7. Opublikowane badania własne 91 J. Orzeł et ol: Oirmomrincs and
7. Opublikowane badania własne 92 I.OnHetaL 1 Chtmomtmn and tnirthjrnr Lnboratory Syurmt 110(2012)
7. Opublikowane badania własne
7. Opublikowane badania własne TalinŁł 101 (2012) 28-114 Contents iists availab!e at SciVerse
7. Opublikowane badania własne I ucl 117!201«;224-229 Contents lists available at SciencoDirect I 1
7. Opublikowane badania własne J. Onel et oL/fuel 117(2014) 224-229 226 ctc.. facilitates the analys
7. Opublikowane badania własne J Ontl et al/Futl 117(2014) 224-229 3. Results and dlscussion The dat
7. Opublikowane badania własne 228    J Orzrt r» al/Furt 117(2014) 224-229 TaMc
7. Opublikowane badania własne f hcmomtinrt jrd IniriliRfnl Ubouiory System1 137 (2014) 74-81 Conten
7. Opublikowane badania własne l Orzeł M Dauykowild j Chrmowma cnd InieHycftii Labonuory Systems 137
7. Opublikowane badania własne l Orzeł, M Doizykowld Owmomrina and InieOmenl Lahcrnicry Systemi 137
7. Opublikowane badania własne l.iUnu 118 <2015 W-70 Contents lists available at ScienceDireciTa
7. Opublikowane badania własne y Oncl et al. / Talmta I3« (2015) 64-70    65 methods

więcej podobnych podstron