8342936742

8342936742




PROGRAM ROZWOJOWY

^1 POLITECHNIKI WARSZAWSKIEJ

Using eąuations (1.3) to (1.5), the incremental mechanical energy is derived as: awm = awe - awf - area (OBC 0),    (1.6)

and that is the area between the two curves for given magnetomotive force. In the case of a rotating machinę, the incremental mechanical energy in terms of the electromagnetic torąue and change in rotor position is written as:

aWm=TcS0,    (1.7)

where: Te is the electromagnetic torąue and 60 is the incremental rotor angle. Hence the electromagnetic torąue is given by:

Te


dW„,

d0


(1.8)

For the case of constant excitation (mmf is constant), the incremental mechanical work done is eąual to the ratę of change of coenergy W'f, which is nothing but the complement of the field energy. Hence the incremental mechanical work done is written as:

dWm=dW'f,    (1.9)

where: W't=J<MF = J<M(Ni) = jN<Mi = J(K0,i)di = Jl(0,i)idi,    (1.10)

and the inductance L and flux linkages i//are functions of rotor position and current. This change in coenergy occurs between two rotor positions O2 (x2) and 0\ (xl). Hence, the air gap torąue in terms of coenergy represented as a function of rotor position and current is:

Te


dWm

~d0


dW’f ćW'f (0,i)

-=-1 i = constant .

dG dO


cni)


If the inductance is linearly varying with rotor position for given current, which in generał is not the case in practice, then the torąue can be derived as:

where:


T = dL(6»,i) i2

e Ae 2

dL(fl,i) _ L(^2,i)-L(<9,,i)

ó>e ~ e2-ex


i = constant ,


(1.12)

(1.13)


and this differential inductance can be considered to be the torąue constant expressed in Nm/A2. In fact it is not constant and it varies continuously. This has the implication that the SRM will not have a steady-state equivalent Circuit in the sense that the DC and AC motors have. Eąuation (1.12) has the following implications:

UNIA EUROPEJSKA

EUROPEJSKI FUNDUSZ SPOŁECZNY


a

Materiały dydaktyczne dystrybuowane bezpłatnie.

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

7



Wyszukiwarka

Podobne podstrony:
PROGRAM ROZWOJOWY^1 POLITECHNIKI WARSZAWSKIEJ Using eąuations (1.3) to (1.5), the incremental mechan
PROGRAM ROZWOJOWY^1 POLITECHNIKI WARSZAWSKIEJ To solve above eąuation one must find transient curren
PROGRAM ROZWOJOWY^1 POLITECHNIKI WARSZAWSKIEJ The symmetry of magnetic Circuit leads to the almost z
PROGRAM ROZWOJOWY^1 POLITECHNIKI WARSZAWSKIEJ 1)    The torque is proportional to the
PROGRAM ROZWOJOWY^1 POLITECHNIKI WARSZAWSKIEJ To solve above eąuation one must find transient curren
PROGRAM ROZWOJOWY^1 POLITECHNIKI WARSZAWSKIEJ The symmetry of magnetic Circuit leads to the almost z
PROGRAM ROZWOJOWY^1 POLITECHNIKI WARSZAWSKIEJ 1)    The torque is proportional to the
PROGRAM ROZWOJOWY ^1 POLITECHNIKI WARSZAWSKIEJ dr inż. Adam BiernatElectrical Machines in the Power
PROGRAM ROZWOJOWY^1 POLITECHNIKI WARSZAWSKIEJ Only for the linear case (no magnetic saturation) the
PROGRAM ROZWOJOWY^1 POLITECHNIKI WARSZAWSKIEJ a = Ua — The maximum value of #w, for Qon = 0 (zero ad
PROGRAM ROZWOJOWY^1 POLITECHNIKI WARSZAWSKIEJ It should be noticed that the interval of conduction i
PROGRAM ROZWOJOWY^1 POLITECHNIKI WARSZAWSKIEJ By adjusting the turn-on and turn-off angles so that t
PROGRAM ROZWOJOWY^1 POLITECHNIKI WARSZAWSKIEJ Eąuation (1.14) may be written as: transformation rota
PROGRAM ROZWOJOWY POLITECHNIKI WARSZAWSKIEJ 2.    Wybierak Testu (TEST Selector) 18-t
PROGRAM ROZWOJOWY ^1 POLITECHNIKI WARSZAWSKIEJ dr inż. Adam BiernatElectrical Machines in the Power
PROGRAM ROZWOJOWY^1 POLITECHNIKI WARSZAWSKIEJ Only for the linear case (no magnetic saturation) the
PROGRAM ROZWOJOWY^1 POLITECHNIKI WARSZAWSKIEJ a = Ua — The maximum value of #w, for Qon = 0 (zero ad
PROGRAM ROZWOJOWY^1 POLITECHNIKI WARSZAWSKIEJ It should be noticed that the interval of conduction i
PROGRAM ROZWOJOWY^1 POLITECHNIKI WARSZAWSKIEJ By adjusting the turn-on and turn-off angles so that t

więcej podobnych podstron