*1 + *2 = * 1*2 *1 + *2 + *3 + ■ • • = *1*2*3 ...
*1*2 = XI + X2 $1x2x3777 = *1 + *2 + *3 + • • •
x + 0 = x x ■ 0 = O
*+1=1 xl=x
0 + 0 = 0 0-0 = 0 1 + 0 = 1 1-0 = 0
1 + 1 = 1 1-1 = 1
0 = 1 1 = 0
Reguły sklejania
(xi + X2)(*l + *2) = *1
*i(*i +*2) = *1 *1 + *1*2 = *1 xi(xi + x2) = Xl
Funkcje logiczne w postaci kanonicznej (normalnej)
i |
*1 |
*2 |
*3 |
Składniki jedynki K, |
Czynniki zera D, |
0 |
0 |
0 |
0 |
K0 = X\X2X3 |
D0 = *1+x2 + x3 |
1 |
0 |
0 |
1 |
K\ = *1*2*3 |
Di = *1 + *2 + X3 |
2 |
0 |
1 |
0 |
K2 = *1*2x3 |
D2 = *1 + *2 + *3 |
3 |
0 |
1 |
1 |
K3 — *1X2*3 |
D3 = *1 + *2 + *3 |
4 |
1 |
0 |
0 |
Ką = *!*2*3 |
D4 = *i + *2 + *3 |
5 |
1 |
0 |
1 |
— XiX2*3 |
D5 = x1+X2 + X3 |
6 |
1 |
1 |
0 |
K6 = *1*2*3 |
D6 = x1+x2 + x3 |
7 |
1 |
1 |
1 |
D7 = *1 + *2 + *3 |
/(xi,X2,...,*n)= £ fiKi
2"-l
/(x1,x2,...,x„)= I] Ui + Di)