maskujących współzależności cech istotnych (specyfikacja i pomijanie takich cech nieistotnych będzie dalej nazywane wygrubianiem informacji)?
Nawiązując do punktu 3, zasadniczym problemem badawczym jest określenie na ile przydatna może być precyzyjna analiza cech ilościowych (np. analiza korelacyjna oryginalnych próbek), czy też lepsze rezultaty detekcji zdarzeń można uzyskać wykorzystując dane jakościowe, takie jak zgrubnie skwantyfikowane wartości sygnałów lub zagregowana informacja obrazowa nawiązująca do tzw. formacji, stosowanych powszechnie w eksperckich analizach technicznych szeregów notowań [171].
Komputerowa analiza szeregów czasowych jest ukierunkowana na identyfikację ich właściwości statystycznych i dynamicznych, w powiązaniu ze znanymi oddziaływaniami zewnętrznymi o charakterze jakościowym lub ilościowym. Jej celem jest na ogół umożliwienie wiarygodnej predykcji lub/i symulacji szeregów z wykorzystaniem modeli matematycznych.
Matematyczna predykcja szeregu czasowego [22], [164], [57] polega na wyznaczeniu jego warunkowej wartości oczekiwanej (prognoza punktowa) dla chwili wyprzedzającej czas bieżący (czas rejestracji ostatniej próbki) o ustaloną liczbę próbek zwaną horyzontem predykcji. Wykorzystuje się do tego celu formuły matematyczne wyrażone jawnie (modele regresyjne parametryczne [22], [164], modele w przestrzeni stanu [67], [103]) lub niejawnie (estymatory nieparametryczne, np. jądrowe [164], predyktory neuronowe [218]). Parametry predyktora wyznacza się na podstawie odpowiednio dobranych danych historycznych metodami optymalizacji (identyfikacja modeli regresyjnych, uczenie modeli neuronowych) lub dostrajania (modele nieparametryczne jądrowe, modele Holta i Browna oparte na wygładzaniu wykładniczym [108]). Analiza właściwości statystycznych reszt lub błędów predyktora w okresie historycznym umożliwia wyznaczenie rozkładu prawdopodobieństwa błędów prognoz, na podstawie którego można formułować prognozy przedziałowe [22], [164].
12