Plan realizacji programu nauczania transmutacji
Klasa: pierwsza
Poziom: podstawowy
Wykładowca: Maciej Tamron
Całkowita liczba godzin: 15
Dział
Temat
Liczba
godzin
Uczeń zna:
Uczeń potrafi:
DZ
IA
Ł I
: P
ODST
A
W
Y TRA
NS
MUTA
C
JI
(
6
h
)
Organizacja pracy
na lekcjach.
Wprowadzenie do
przedmiotu.
1
- przedmiotowy system oceniania,
- program nauczania w klasie pierwszej,
- model prowadzenia zajęć oraz ich
organizację,
- definicję transmutacji i transfiguracji,
różnice między dwoma pojęciami.
- nazwać z podanego przykładu
podstawowe składniki
transmutacji.
Opór
transmutacyjny
transmutanta.
Proste i złożone
równania
przemian.
1
- definicję oporu,
- definicję stałych Rothera i Cristoffa,
- wzór Rothera,
- wartości stałych r i C
- obliczać opór transmutanta dla
podstawowych przemian,
- tworzyć równania proste i
złożone transmutacji i
transfiguracji.
Transmutacja igły
w zapałkę.
1
- zasady poprawnego chwytu,
- zasady poprawnej manipulacji,
- metodę krokową.
- przemianić igłę w zapałkę
stosując metodę krokową.
Podstawowe
prawa
transmutacyjne.
Podział
filogenetyczny.
1
- I i II prawo Cristoffa,
- paradoks Gampa i teoria Waltera
Whitney,
- koncepcję Cannemana,
- prawo jednolitości transmutacji,
- podział filogenetyczny transmutacji.
- zastosować I i II prawo Cristoffa
w praktyce,
- podany przykład przemiany
sklasyfikować do odpowiedniej
grupy filogenetycznej.
Proste rodzaje
transmutacji.
Szybkość
transmutacji.
1
- podstawowy podział rodzajów
transmutacji,
- pojęcie szybkości transmutacji,
- wzór na obliczanie szybkości
transmutacji,
- podział transmutacji ze względu na
szybkość
- wyszczególnić rodzaj
transmutacji dla podanych
przykładów przemian
podstawowych,
- obliczyć szybkość transmutacji
dla przemian jedno- i
wielosubstratowych
Sprawdzian
wiadomości.
1
DZ
IA
Ł I
I: T
RA
NS
FI
GU
RA
CJA
(5
h
)
Transfiguracja
rozmiaru.
1
- pojęcie transfiguracji oraz jej
podstawowy podział,
- pojęcie cechy priorytetowej i cechy
złożonej,
- chwyt i manipulację dla transfiguracji
zwiększającej i zmniejszającej,
- teorię transfiguracji rozmiaru za pomocą
czaru Engorgio i Reducio
- zapisać równanie złożone
transfiguracji rozmiaru dla
podanego przykładu,
- zapisać kodowanie zaklęć dla
transfiguracji rozmiaru,
- dokonać transfiguracji
rozmiaru metodą krokową za
pomocą czaru Engorgio i
Reducio
Transfiguracja
barwy.
1
- chwyt i manipulację dla transfiguracji
zmieniającej barwę oraz odcień barwy,
- teorię transfiguracji barw i odcienia barw
za pomocą czarów Ilivie chromo oraz
Chromospentis
- II prawo transfiguracyjne Tamrona
- zapisać równanie złożone
transfiguracji zmiany barwy i
zmiany odcienia barwy dla
podanego przykładu,
- zapisać kodowanie zaklęć dla
transfiguracji zmiany barwy i
zmiany odcienia barwy,
- dokonać transfiguracji
rozmiaru metodą krokową za
pomocą czaru Ilive chromo i
Chromospentis
Transmutacja w
cyklu żywiołów.
1
- pojęcie cyklu żywiołów,
- przejścia pomiędzy cyklem żywiołu wody,
- użycie zaklęcia Frigidum ignio
- przyporządkować nazwy zaklęć
do odpowiednich przejść w cyklu
wody,
- zapisać kodowanie zaklęć
przemian cyklu wody,
- przeprowadzić przemiany cyklu
wody
Transmutacja
składnikowa.
1
- pojęcie macierzy transmutacji
składnikowej,
- tabelę macierzy transmutacji
składnikowej,
- konstrukcje kodu dla transmutacji
składnikowej
- pojęcie zaklęcia niewidzialności,
- utworzyć równanie dla
transmutacji składnikowej,
- utworzyć zaklęcie
parametryczne dla podanych
przykładów przemian,
- sklasyfikować transmutację
składnikową jako transfigurację
materiałową.
Sprawdzian
wiadomości.
1
DZ
IA
Ł I
II
:
PRZ
YKŁ
A
DY TRA
NS
MUTA
CJ
I I
LOŚC
IOW
EJ
(4
h
)
Politransmutacja.
1
- pojęcie politransmutacji, szeregu zaklęć
transmutacyjnych,
- pojęcie zaklęć parametrycznych i
nieparametrycznych,
- konstrukcję wzoru oporu transmutanta
dla politransmutacji
- utworzyć formułę
parametryczną dla podanego
przykładu politransmutacji,
- przeprowadzić
politransmutacje do 10
substratów,
- przeprowadzić przykładowe
politransmutacje formułami
nieparametrycznymi
Transmutacja
dzieląca a
multiplikacja.
1
- pojęcie transmutacji dzielącej,
multiplikacji,
- różnice między transmutacją dzielącą a
multiplikacją,
- definicję efektu ubytku masy oraz
związane z nim konsekwencje,
- konstrukcję równania złożonego dla
transmutacji dzielącej oraz multiplikacji,
- szereg zaklęć transmutacji dzielącej,
- szereg zaklęć przemian multiplikacyjnych
- utworzyć formułę
parametryczną dla podanego
przykładu transmutacji dzielącej
oraz multiplikacji,
- rozpoznać, kiedy została
przeprowadzona transmutacja
dzieląca a kiedy multiplikacja,
- przeprowadzić przykładowe
przemiany dzielące i
multiplikujące formułami
nieparametrycznymi
Scalanie i
kompresja.
1
- pojęcie zjawiska asymilacji cech,
- pojęcie transmutacji scalającej i
kompresyjnej,
- różnice między transmutacją scalającą a
kompresyjną,
- konstrukcję równania złożonego dla
scalania i kompresji,
- szereg zaklęć kompresyjnych i
scalających,
- wzór równania oporu transmutanta
scalania i kompresji,
- utworzyć formułę
parametryczną dla podanego
przykładu scalania i kompresji,
- oszacować opór transmutanta
dla podanych przykładów,
- rozpoznać, kiedy została
przeprowadzona transmutacja
scalająca a kiedy kompresyjna,
- rozpoznać zjawisko asymilacji
cech,
- przeprowadzić przykładowe
transmutacje scalające i
kompresyjne formułami
nieparametrycznymi
Transmutacja
podwójna i
mnożąca.
- definicje transmutacji podwójnej i
pomnażającej,
- prawo mnożenia masy,
- skutki uboczne przemian pomnażających,
- szereg zaklęć mnożących,
- wzór równania oporu transmutanta
transmutacji mnożącej i podwójnej,
- konstrukcję równania złożonego dla
transmutacji mnożącej i podwójnej.
- utworzyć formułę
parametryczną dla podanego
przykładu mnożenia,
- dokonać przemiany podwójnej
zaklęciem Duoformo,
- dokonać przeciwtransmutacji
dla przemiany podwójnej
zaklęciem Contraformo
- oszacować opór transmutanta
dla podanych przykładów,
- przeprowadzić przykładowe
transmutacje mnożące i
podwójne formułami
nieparametrycznymi
Razem godzin:
15