1
Napęd elektryczny
ED sem. V
Dr in
ż
. Jarosław Werdoni
WE-132 lub WE-015
jwerdoni@pb.edu.pl
Materiały – strona domowa ze strony WE
2
Napęd elektryczny, sem. V
Kod przedmiotu: ES1A 500 038
Nazwa przedmiotu: NAP
Ę
D ELEKTRYCZNY
Semestr: V ED
Formy zaj
ęć
: W – 15; L – 15; Ps - 15
Liczba godzin wg planu studiów: 45
Liczba punktów ECTS: 4pkt
Powi
ą
zanie z innymi przedmiotami:
Maszyny elektryczne
2
3
Napęd elektryczny, sem. V
Program wykładów (15 godz.):
1.
Podstawowe cechy nap
ę
du elektrycznego oraz struktura układów nap
ę
dowych.
2.
Typowe charakterystyki mechaniczne maszyn roboczych.
3.
Zasada sprowadzania momentów oporowych oraz bezwładno
ś
ci do wału silnika. [1, 2]
4.
Podstawowe równanie ruchu oraz kryterium stabilno
ś
ci statycznej układów nap
ę
dowych. [2]
5.
Elementarne przykłady całkowania równania ruchu. [1, 2]
6.
Blokowy schemat strukturalny obcowzbudnego silnika pr
ą
du stałego przy sterowaniu
napi
ę
ciowym w I strefie regulacji pr
ę
dko
ś
ci.
7.
Stany przej
ś
ciowe w układach nap
ę
dowych z obcowzbudnym silnikiem pr
ą
du stałego.
8.
Sposoby rozruchu oraz regulacja pr
ę
dko
ś
ci układów nap
ę
dowych z silnikami
obcowzbudnymi oraz szeregowymi pr
ą
du stałego.
9.
Sposoby rozruchu oraz regulacja pr
ę
dko
ś
ci układów nap
ę
dowych z silnikami
asynchronicznymi klatkowymi i pier
ś
cieniowymi.
10. Proste układy sterowania stycznikowego w układach nap
ę
dowych.
11. Realizacja hamowania dynamicznego, przeciwwł
ą
czeniem oraz odzyskowego w układach
nap
ę
dowych z silnikami pr
ą
du stałego i przemiennego.
12. Sposoby rozruchu silników asynchronicznych klatkowych jednofazowych.
13. Przekształtnikowy oraz elektromaszynowy układ Leonarda.
14. Podstawy sterowania cz
ę
stotliwo
ś
ciowego silników pr
ą
du przemiennego.
15. Obci
ąż
alno
ść
oraz dobór mocy silników do pracy okresowo zmiennej. [2]
Uwaga!
Zagadnienia podkre
ś
lone nie b
ę
d
ą
przedstawiane szczegółowo na
wykładzie, natomiast ich znajomo
ść
b
ę
dzie obowi
ą
zywa
ć
na zaliczeniu.
4
Napęd elektryczny, sem. V
Literatura podstawowa:
1. Drozdowski P.: Wprowadzenie do nap
ę
dów elektrycznych. Kraków PK 1998.
2. Bisztyga K.: Sterowanie i regulacja silników elektrycznych. Warszawa WNT 1989.
3. Gogolewski Z., Kuczewski Z.: Nap
ę
d elektryczny. Warszawa WNT 1984.
4. Grunwald Z.: Nap
ę
d elektryczny. Warszawa, WNT 1987.
5. Tunia H., Ka
ź
mierkowski M.: Automatyka nap
ę
du przekształtnikowego.
Warszawa PWN 1987.
Zasady zaliczenia wykładu oraz pracowni specjalistycznej:
Jeden sprawdzian w trakcie semestru i jeden poprawkowy w sesji podstawowej
Zasady zaliczenia laboratorium:
Obecno
ść
na wszystkich zaj
ę
ciach, ocena pozytywna z ka
ż
dego
ć
wiczenia,
oddane i pozytywnie ocenione sprawozdania
Wykładowca:
Dr in
ż
. Jarosław WERDONI
WE – 132 lub WE – 015
3
5
Napęd elektryczny, sem. V
Cechy silników elektrycznych z punktu widzenia zastosowania ich w
układach nap
ę
dowych:
zalety:
- szeroki zakres mocy produkowanych silników (od pojedynczych watów
w przypadku silników do nap
ę
du modeli do stu megawatów w
przypadku silników elektrowni szczytowo-pompowych),
- powszechna dost
ę
pno
ść
energii elektrycznej i łatwo
ść
dostarczenia jej
w dowolny punkt,
- ochrona
ś
rodowiska,
- mo
ż
liwo
ść
pracy w ró
ż
nych warunkach otoczenia (np. w warunkach
zagro
ż
enia wybuchem, po
ż
arowego - niska temp. jego elementów),
- łatwa mo
ż
liwo
ść
kontroli i programowania pracy,
- łatwa regulacja pr
ę
dko
ś
ci (w szerokim zakresie i z du
żą
dokładno
ś
ci
ą
),
- mog
ą
pracowa
ć
we wszystkich czterech kwadrantach układu
współrz
ę
dnych (praca silnikowa, hamulcowa oraz pr
ą
dnicowa),
- wysoka sprawno
ść
, niska cena i prosta obsługa w czasie eksploatacji.
6
Napęd elektryczny, sem. V
Cechy silników elektrycznych z punktu widzenia zastosowania ich w
układach nap
ę
dowych:
wady:
- konieczno
ść
przył
ą
czenia do nieruchomego zazwyczaj
ź
ródła energii
elektrycznej (akumulatory s
ą
ci
ęż
kie i maj
ą
mał
ą
pojemno
ść
- wózki o
małym zasi
ę
gu, przewody
ś
lizgowe - trakcja kolejowa, tramwajowa i
trolejbusy, baterie słoneczne),
- ci
ęż
ar jednostkowy i szybko
ść
działania mniejsza ni
ż
w przypadku
siłowników pneumatycznych i hydraulicznych.
4
7
Napęd elektryczny, sem. V
Ogólna struktura układu nap
ę
dowego
ZE -
ź
ródło energii (elektrycznej), PK - przekształtnik energii,
S - silnik elektryczny, PM - przekładnia mechaniczna,
MR - maszyna robocza, US - układ steruj
ą
cy,
U
ZE
- napi
ę
cie
ź
ródła energii, U
S
- napi
ę
cie na zaciskach silnika,
SS, S1, S2 - sygnały steruj
ą
ce, Sz - sygnały sprz
ęż
e
ń
zwrotnych
8
Napęd elektryczny, sem. V
Charakterystyki mechaniczne silników elektrycznych
Z punktu widzenia nap
ę
du elektrycznego silniki klasyfikuje si
ę
pod
wzgl
ę
dem sztywno
ś
ci charakterystyki mechanicznej.
ω
ω
ω
ω
=f(M) lub M=f(
ω
ω
ω
ω
) ewentualnie M=f(n)
Charakterystyka idealnie sztywna
• silniki synchroniczne
• silniki asynchroniczne synchronizowane
5
9
Napęd elektryczny, sem. V
Charakterystyki mechaniczne silników elektrycznych
Z punktu widzenia nap
ę
du elektrycznego silniki klasyfikuje si
ę
pod
wzgl
ę
dem sztywno
ś
ci charakterystyki mechanicznej.
ω
ω
ω
ω
=f(M) lub M=f(
ω
ω
ω
ω
) ewentualnie M=f(n)
Charakterystyka sztywna
•silniki bocznikowe pr
ą
du stałego
•silniki obcowzbudne pr
ą
du stałego
•silniki asynchroniczne (cz
ęść
liniowa
charakterystyki)
%
10
%
100
*
≤
∆
ω
ω
o
10
Napęd elektryczny, sem. V
Charakterystyki mechaniczne silników elektrycznych
Z punktu widzenia nap
ę
du elektrycznego silniki klasyfikuje si
ę
pod
wzgl
ę
dem sztywno
ś
ci charakterystyki mechanicznej.
ω
ω
ω
ω
=f(M) lub M=f(
ω
ω
ω
ω
) ewentualnie M=f(n)
Charakterystyka mi
ę
kka
• silniki szeregowe pr
ą
du stałego i przemiennego
6
11
Napęd elektryczny, sem. V
Przekładnia mechaniczna PM (poł
ą
czenie mechaniczne)
Mo
ż
liwe s
ą
nast
ę
puj
ą
ce poł
ą
czenia mechaniczne silnika z maszyn
ą
robocz
ą
:
poł
ą
czenie mechaniczne bez przekładni
na sztywno
poprzez sprz
ę
gło rozł
ą
czne
poł
ą
czenie z przekładni
ą
z
ę
bate
pasowe
ła
ń
cuchowe
Przekładnie mog
ą
by
ć
bezstopniowe lub stopniowe.
Poł
ą
czenie silnika z mechanizmem mo
ż
e by
ć
:
sztywne
poprzez element spr
ęż
ysty
z luzem
12
Napęd elektryczny, sem. V
Typowe charakterystyki mechaniczne maszyn roboczych MR
Moment w nap
ę
dzie elektrycznym zwykle jest oznaczany du
żą
liter
ą
M.
W celu odró
ż
nienia momentu oporowego maszyny roboczej od
momentu nap
ę
dowego silnika, do du
ż
ej litery M dodajemy indeks:
Mb, Mm, Mop, Mr
Charakterystyka mechaniczna stała,
tzw.
moment „d
ź
wigowy”.
Moment nie zale
ż
y od pr
ę
dko
ś
ci.
(wci
ą
garki, d
ź
wigi, kompresory
ś
rubowe i
tłokowe, ta
ś
moci
ą
gi, młyny, wyci
ą
garki)
7
13
Napęd elektryczny, sem. V
Typowe charakterystyki mechaniczne maszyn roboczych MR
Moment w nap
ę
dzie elektrycznym zwykle jest oznaczany du
żą
liter
ą
M.
W celu odró
ż
nienia momentu oporowego maszyny roboczej od
momentu nap
ę
dowego silnika, do du
ż
ej litery M dodajemy indeks:
Mb, Mm, Mop, Mr
Charakterystyka mechaniczna jest liniowo
zale
ż
na od pr
ę
dko
ś
ci, tzw.
moment
„pr
ą
dnicowy”
(walcarki, wygładzarki z
tarciem lepkim)
Tego typu moment reprezentuje równie
ż
pr
ą
dnica pr
ą
du stałego pracuj
ą
ca, przy
k
Φ
=const., na stał
ą
rezystancj
ę
obci
ąż
enia
Ro.
ω
ω
ω
⋅
=
+
⋅
Φ
Φ
=
+
=
Σ
=
⋅
Φ
=
⋅
Φ
=
C
M
Ro
Rtc
k
k
M
Ro
Rtc
E
R
E
It
It
k
M
k
E
14
Napęd elektryczny, sem. V
Typowe charakterystyki mechaniczne maszyn roboczych MR
Moment w nap
ę
dzie elektrycznym zwykle jest oznaczany du
żą
liter
ą
M.
W celu odró
ż
nienia momentu oporowego maszyny roboczej od
momentu nap
ę
dowego silnika, do du
ż
ej litery M dodajemy indeks:
Mb, Mm, Mop, Mr
Charakterystyka mechaniczna zale
ż
na od pr
ę
dko
ś
ci w kwadracie, tzw. moment
„wentylatorowy”.
Urz
ą
dzenia do ci
ą
głego transportu cieczy lub gazów
(wentylatory, pompy od
ś
rodkowe, kompresory, wirówki, mieszadła).
8
15
Napęd elektryczny, sem. V
Typowe charakterystyki mechaniczne maszyn roboczych MR
Moment w nap
ę
dzie elektrycznym zwykle jest oznaczany du
żą
liter
ą
M.
W celu odró
ż
nienia momentu oporowego maszyny roboczej od
momentu nap
ę
dowego silnika, do du
ż
ej litery M dodajemy indeks:
Mb, Mm, Mop, Mr
Charakterystyka mechaniczna dla której
moment zale
ż
y hiperbolicznie od pr
ę
dko
ś
ci.
Ró
ż
nego typu urz
ą
dzenia do przewijania.
16
Napęd elektryczny, sem. V
Przykłady maszyn roboczych współpracuj
ą
cych z elektrycznymi
układami nap
ę
dowymi.
Nap
ę
d pracuj
ą
cy cyklicznie
oraz ze zmiennym obci
ąż
eniem.
9
17
Napęd elektryczny, sem. V
Przykłady maszyn roboczych współpracuj
ą
cych z elektrycznymi
układami nap
ę
dowymi.
Nap
ę
d trakcyjny pracuj
ą
cy cyklicznie oraz ze zmiennym obci
ąż
eniem z
przekładni
ą
i szyn
ą
z
ę
bat
ą
.
18
Napęd elektryczny, sem. V
Przykłady maszyn roboczych współpracuj
ą
cych z elektrycznymi
układami nap
ę
dowymi.
Nap
ę
d trakcyjny pracuj
ą
cy cyklicznie oraz ze zmiennym obci
ąż
eniem z
przekładni
ą
i paskiem z
ę
batym.
10
19
Napęd elektryczny, sem. V
Przykłady maszyn roboczych współpracuj
ą
cych z elektrycznymi
układami nap
ę
dowymi.
Nap
ę
d d
ź
wigowy pracuj
ą
cy z przekładni
ą
i przeciwwag
ą
(przeło
ż
enie bloków 1:1).
20
Napęd elektryczny, sem. V
Przykłady maszyn roboczych współpracuj
ą
cych z elektrycznymi
układami nap
ę
dowymi.
Nap
ę
d d
ź
wigowy pracuj
ą
cy z przekładni
ą
, przeciwwag
ą
i dwoma blokami
ruchomymi (przeło
ż
enie bloków 2:1).
11
21
Napęd elektryczny, sem. V
Przykłady maszyn roboczych współpracuj
ą
cych z elektrycznymi
układami nap
ę
dowymi.
Nap
ę
d obrotowy pracuj
ą
cy cyklicznie z przekładni
ą
w układzie pionowym
i poziomym.
22
Napęd elektryczny, sem. V
Przykłady maszyn roboczych współpracuj
ą
cych z elektrycznymi
układami nap
ę
dowymi.
Nap
ę
d stołu obrotowego pracuj
ą
cy cyklicznie z przekładni
ą
w układzie
poziomym.
12
23
Napęd elektryczny, sem. V
Przykłady maszyn roboczych współpracuj
ą
cych z elektrycznymi
układami nap
ę
dowymi.
Nap
ę
d
ś
rubowy pracuj
ą
cy cyklicznie z przekładni
ą
.
24
Napęd elektryczny, sem. V
Przykłady maszyn roboczych współpracuj
ą
cych z elektrycznymi
układami nap
ę
dowymi.
Nap
ę
d korbowodowy z przekładni
ą
.
13
25
Napęd elektryczny, sem. V
Przykłady maszyn roboczych współpracuj
ą
cych z elektrycznymi
układami nap
ę
dowymi.
Nap
ę
d no
ż
y wiruj
ą
cych, pracuj
ą
cy cyklicznie ze zmienn
ą
długo
ś
ci
ą
ci
ę
cia
(z przekładni
ą
).
26
Napęd elektryczny, sem. V
Z punktu widzenia analizy układów nap
ę
dowych istotny jest podział
oporowych momentów mechanicznych na:
bierne
czynne.
Do grupy momentów biernych zaliczamy te, które pojawiaj
ą
si
ę
zawsze
przy pr
ę
dko
ś
ciach ró
ż
nych od zera i s
ą
zawsze momentami oporowymi
nie mog
ą
cymi nada
ć
układowi przyspieszenia od zerowej pr
ę
dko
ś
ci.
Momenty czynne wyst
ę
puj
ą
w mechanizmach z magazynami energii
potencjalnej, takich jak ci
ęż
ar na pochyło
ś
ci lub ci
ęż
ar zawieszony na
linie. Momenty te mog
ą
nada
ć
układowi przyspieszenie je
ś
li Mb>Me.
14
27
Napęd elektryczny, sem. V
r – tarczy hamulca; F – siła docisku szcz
ę
k hamulca;
µ
- współczynnik tarcia;
Moment bierny: Mb = (F
µ
r) sign(
ω
) [Nm]
28
Napęd elektryczny, sem. V
r – promie
ń
b
ę
bna linowego; G – ci
ęż
ar zawieszony na linie;
Moment czynny: Mb = G r [Nm]
15
29
Napęd elektryczny, sem. V
Równanie ruchu układu nap
ę
dowego
Rozwa
ż
my prosty układ nap
ę
dowy:
Faktycznie M oraz Mb maj
ą
znaki
przeciwne. Z tego powodu, dla wygody,
umówiono si
ę
rysowa
ć
M oraz Mb w
jednej
ć
wiartce pami
ę
taj
ą
c, i
ż
Mb
posiada znak „ - ”, który piszemy
sporadycznie.
Dowolna ró
ż
nica momentów
Me - Mb = Md
- stanowi moment dynamiczny.
Stan ustalony jest szczególnym
przypadkiem stanu przej
ś
ciowego.
30
Napęd elektryczny, sem. V
Stan ustalony jest wtedy, gdy jest zerowy moment dynamiczny.
Ogólna posta
ć
równania ruchu układu nap
ę
dowego posiada
nast
ę
puj
ą
c
ą
posta
ć
:
dt
dJ
dt
d
J
Mb
Me
Md
2
ω
ω
+
=
−
=
gdzie: J [kgm
2
]– zast
ę
pczy moment bezwładno
ś
ci układu.
Czasami J zale
ż
y od poło
ż
enia i wtedy
dt
d
α
ω
=
a równanie ruchu przyjmie posta
ć
:
Mb
Me
d
dJ
dt
d
J
Md
−
=
+
=
α
ω
ω
2
2
W naszych rozwa
ż
aniach b
ę
dziemy si
ę
ogranicza
ć
do przypadków, gdy
J=const. W tym przypadku równanie ruchu przyjmie posta
ć
:
dt
d
J
Mb
Me
Md
ω
=
−
=
Me – Mb>0
wzrost pr
ę
dko
ś
ci,
Me – Mb<0
zmniejszanie si
ę
pr
ę
dko
ś
ci.
16
31
Napęd elektryczny, sem. V
Elementarne przykłady całkowania równania ruchu
Podstawowe równanie ruchu:
J
d
dt
e
m
d
M
M
M
ω = −
=
Czas trwania stanów przej
ś
ciowych (Md
≠
0) mo
ż
emy wyznaczy
ć
z
powy
ż
szego równania w nast
ę
puj
ą
cy sposób:
t
J
d
e
m
M
M
=
−
∫
ω
(
)
Niestety w praktyce in
ż
ynierskiej zwykle utrudnione jest korzystanie z tego
równania z nast
ę
puj
ą
cych powodów:
- nieznajomo
ść
charakterystyki Me = f(
ω
),
- nieznajomo
ść
charakterystyki Mm = f(
ω
),
- trudno
ś
ci z analitycznym rozwi
ą
zaniem najcz
ęś
ciej nieliniowych równa
ń
.
Dlatego te
ż
w praktyce in
ż
ynierskiej koniecznym staje si
ę
zastosowanie
uproszcze
ń
, czynionych z pełn
ą ś
wiadomo
ś
ci
ą
.
32
Napęd elektryczny, sem. V
Dla silnika klatkowego czas rozruchu mo
ż
emy okre
ś
li
ć
dysponuj
ą
c
tzw.
ś
rednim momentem elektromagnetycznym.
r
d
t
J
≅
∆ω
ś
r
M
dś r
eś r
bś r
M
M
M
=
−
( )
e
r
k
M
M
ś
r
M
=
+
⋅
2
0 9
.
gdzie: Mr, Mk - dane katalogowe,
∆ω
=
ω
k
-
ω
p
Oczywi
ś
cie otrzymany wynik jest przybli
ż
ony i nie uwzgl
ę
dnia elektromagnetycznych
procesów przej
ś
ciowych w silniku. Pozwala jednak na szacowanie czasów rozruchu
czy hamowania.
17
33
Napęd elektryczny, sem. V
W przypadku, gdy moment dynamiczny Md (niezale
ż
nie od rodzaju
silnika) jest liniow
ą
funkcj
ą
pr
ę
dko
ś
ci, czas trwania stanów przej
ś
ciowych
mo
ż
emy obliczy
ć
z nast
ę
puj
ą
cej zale
ż
no
ś
ci:
p
k
p
dk
dp
dk
dp
t
J
M
M
M
M
=
−
−
⋅
ω
ω
ln
Uwaga!
Przy doj
ś
ciu do stanu ustalonego M
dk
= 0, ale ln(0) jest nieokre
ś
lony (t
p
→
∞
). W takiej sytuacji M
dk
nale
ż
y obliczy
ć
dla pr
ę
dko
ś
ci równej np. 0,95
ω
ust
.
34
Napęd elektryczny, sem. V
2. WŁASNO
Ś
CI DYNAMICZNE UKŁADÓW NAP
Ę
DOWYCH Z SILNIKAMI
OBCOWZBUDNYMI PR
Ą
DU STAŁEGO
Obwód elektryczny:
przy t = 0; Iw = const.;
Φ
= const.
Ut t
k
t
R It t
Lt
dIt t
dt
( )
( )
( )
( )
=
⋅
+ ⋅
+
Φ ω
(2.1)
zakładamy, i
ż
R =
Σ
Rt = Rtc = const., za
ś
Lt = Ltc = const.
Mechanika:
Md(t) = M(t) - Mb(t)
(2.2)
J
d
t
dt
k
It t
Mb t
ω
( )
( )
( )
=
⋅
−
Φ
przyjmujemy, i
ż
J=const. oraz Mo=0 (moment strat) lub jest zawarty w Mb(t).
(2.3)
18
35
Napęd elektryczny, sem. V
(2.5)
Ostatecznie otrzymamy układ równa
ń
opisuj
ą
cy silnik:
Ut t
k
t
R It t
Lt
dIt t
dt
( )
( )
( )
( )
=
⋅
+ ⋅
+
Φ ω
J
d
t
dt
k
It t
Mb t
ω
( )
( )
( )
=
⋅
−
Φ
(2.4)
Zastosujmy do układu równa
ń
(2.4), (2.5) przekształcenie Laplace’a:
U(s) = k
Φ⋅ω
(s) + R
⋅
It(s) + Lt
⋅
s
⋅
It(s) - Lt
⋅
It(0)
(2.6)
J
⋅
s
⋅ω
(s) - J
⋅ω
(0) = k
Φ⋅
It(s) - Mb(s)
(2.7)
przy zało
ż
eniu,
ż
e It(0) = 0;
ω
(0) = 0 otrzymamy:
U s
k
s
R
Lt
R
s
It s
( )
( )
( )
=
⋅
+
+
⋅
Φ ω
1
(2.8)
J s
s
k
It s
Mb s
⋅ ⋅
=
⋅
−
ω
( )
( )
( )
Φ
(2.9)
Oznaczmy:
Lt
R
Tt
=
- elektromagnetyczna stała czasowa obwodu twornika.
Wynosi ona kilkadziesi
ą
t milisekund np. 0,04 s.
36
Napęd elektryczny, sem. V
(2.11)
(2.10)
Z równania (2.8) wyznaczamy It(s) natomiast z równania (2.9) -
ω
(s):
[
]
It s
R
Tt s
U s
k
s
( )
(
)
( )
( )
=
+
⋅
−
⋅
1
1
Φ ω
[
]
ω
( )
( )
( )
s
J s
k
It s
Mb s
=
⋅
⋅
−
1
Φ
W oparciu o powy
ż
sze równania narysujmy schemat blokowy obcowzbudnego
silnika pr
ą
du stałego przy sterowaniu napi
ę
ciowym od strony obwodu twornika:
19
37
Napęd elektryczny, sem. V
Na podstawie schematu blokowego mo
ż
emy wyznaczy
ć
nast
ę
puj
ą
ce transmitancje:
1
G s
s
U s
( )
( )
( )
= ω
2
G
s
s
Mb s
( )
( )
( )
= ω
3
G
s
It s
U s
( )
( )
( )
=
4
G
s
It s
Mb s
( )
( )
( )
=
Znajd
ź
my te transmitancje:
1
2
2
2
2
2
2
2
1
1
1
1
1
1
G s
s
U s
k
R Tt s
s J
k
R Tt s
s J
k
R Tt s
s J
k
k
J R Tt s
J R s
k
k
J R
k
Tt s
J R
k
s
( )
( )
( )
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
=
=
⋅ + ⋅ ⋅
+
⋅ + ⋅ ⋅
=
⋅ + ⋅ ⋅ +
=
=
⋅ ⋅ ⋅ + ⋅ ⋅ +
=
⋅
⋅ ⋅ +
⋅
⋅ +
ω
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
(2.12)
38
Napęd elektryczny, sem. V
(2.13)
Oznaczaj
ą
c:
Tm
J R
k
= ⋅
2
(
)
Φ
- elektromechaniczna stała czasowa układu nap
ę
dowego,
przy czym J = J
silnika
+ J
MRsprowadzony
ostatecznie otrzymamy:
1
2
1
1
G s
s
U s
k
Tm Tt s
Tm s
( )
( )
( )
=
=
⋅ ⋅ +
⋅ +
ω
Φ
Otrzymali
ś
my układ drugiego rz
ę
du, o dwóch stałych czasowych i wzmocnieniu 1/k
Φ
Podobnie mo
ż
emy wyznaczy
ć
pozostałe transmitancje silnika:
2
2
2
1
1
G
s
s
Mb s
R
k
Tt s
Tm Tt s
Tm s
( )
( )
( )
(
)
(
)
=
= −
⋅ +
⋅ ⋅ +
⋅ +
ω
Φ
(2.14)
20
39
Napęd elektryczny, sem. V
(2.15)
(2.16)
3
2
1
1
G
s
It s
U s
R
Tm s
Tm Tt s
Tm s
( )
( )
( )
=
=
⋅
⋅
⋅ ⋅ +
⋅ +
4
2
1
1
G
s
It s
Mb s
k
Tm Tt s
Tm s
( )
( )
( )
=
=
⋅ ⋅ +
⋅ +
Φ
Zauwa
ż
my,
ż
e mianowniki transmitancji s
ą
jednakowe.
Jest to równanie kwadratowe zwane równaniem charakterystycznym silnika
i pierwiastki tego równania okre
ś
laj
ą
własno
ś
ci dynamiczne silnika.
Tm
⋅
Tt
⋅
s2 + Tm
⋅
s + 1 = 0
∆ =
− ⋅ ⋅
=
− ⋅
2
2
4
1
4
Tm
Tm Tt
Tm
Tt
Tm
1 2
1
1
4
2
,
S
Tt
Tm
Tt
=
− ±
− ⋅
⋅
40
Napęd elektryczny, sem. V
(2.17)
Je
ś
li pierwiastki s
ą
liczbami rzeczywistymi to:
∆ ≥
⇒
− ⋅
≥
⇒
≥ ⋅
0
1
4
0
4
Tt
Tm
Tm
Tt
Jest to warunek aperiodycznego charakteru odpowiedzi silnika na skok
napi
ę
cia zasilaj
ą
cego twornik.
Tms
J
R
k
s
tc
= ⋅
2
(
)
Φ
- stała elektromechaniczna samego silnika
Tms
≅
kilkadziesi
ą
t ms;
Tms
≈
Tt
Je
ś
li mamy, i
ż
Tm
>>
Tt to mo
ż
emy przyj
ąć
,
ż
e Tt
≈
0 i wtedy transmitancje
opisuj
ą
ce silnik upraszczaj
ą
si
ę
i otrzymujemy układ pierwszego rz
ę
du.
1
1
1
G s
s
U s
k
Tm s
( )
( )
( )
=
=
⋅ +
ω
Φ
2
2
1
G
s
s
Mb s
R
k
Tm s
( )
( )
( )
(
)
=
= −
⋅ +
ω
Φ
3
1
1
G
s
It s
U s
R
s Tm
Tm s
( )
( )
( )
=
=
⋅ ⋅
⋅ +
4
1
1
G
s
It s
U s
k
Tm s
( )
( )
( )
=
=
⋅ +
Φ
(2.20)
21
41
Napęd elektryczny, sem. V
Rozwa
ż
my sytuacj
ę
, w której silnik obcowzbudny pr
ą
du stałego pracuje
z pr
ę
dko
ś
ci
ą
pocz
ą
tkow
ą
ω
=
ω
p
.
Jaka b
ę
dzie odpowied
ź
pr
ę
dko
ś
ci obrotowej i pr
ą
du twornika w funkcji
czasu na skok napi
ę
cia zasilaj
ą
cego twornik?
Na razie przyjmijmy,
ż
e Lt
≅
0
⇒
Tt
≅
0
⇒
L/R
≅
0.
Na podstawie równa
ń
(2.6) i (2.7) mo
ż
emy zapisa
ć
:
U(s) = k
Φ⋅ω
(s) + R
⋅
It(s) + Lt
⋅
s
⋅
It(s)
(2.21)
J
⋅
s
⋅ω
(s) - J
⋅ω
(0) = k
Φ⋅
It(s) - Mb(s)
(2.22)
Ponadto załó
ż
my:
U s
Un s
Un
s
( )
( )
=
=
k
Φ
= k
Φ
n = const.;
ω
(0) =
ω
p
Silnik obci
ąż
ony jest stałym momentem biernym:
Mb s
Mb
s
( )
=
Z równania (2.22) wyznaczamy pr
ą
d twornika:
It s
k
s J
s
k
s J
k
Mb s
p
( )
( )
( )
=
⋅ ⋅ ⋅
−
⋅ ⋅ ⋅
+
⋅
1
1
1
Φ
Φ
Φ
ω
ω
(2.23)
42
Napęd elektryczny, sem. V
Zale
ż
no
ść
(2.23) wstawmy do równania (2.21):
U s
k
s
R J
k
s
s
R J
k
R
k
Mb s
p
( )
( )
( )
( )
=
⋅
+ ⋅ ⋅ ⋅
− ⋅ ⋅
+
⋅
Φ
Φ
Φ
Φ
ω
ω
ω
st
ą
d:
ω
ω
( )
( )
(
)
(
)
( )
s
U s
k
Tm s
Tm
Tm s
R
k
Mb s
Tm s
p
=
⋅
⋅ +
+
⋅
⋅ +
−
⋅
⋅ +
Φ
Φ
1
1
1
2
(2.24)
Uwzgl
ę
dniaj
ą
c przyj
ę
te zało
ż
enia
U s
Un
s
( )
=
oraz
Mb s
Mb
s
( )
=
otrzymamy:
ω
ω
( )
(
)
(
)
(
)
s
Un
s k
Tm s
Tm
Tm s
R
k
Mb
s Tm s
p
=
⋅
⋅
⋅ +
+
⋅ +
−
⋅
⋅
⋅ +
Φ
Φ
1
1
1
2
Uwzgl
ę
dniaj
ą
c ponadto zale
ż
no
ś
ci:
Un
k
R
k
Mb
on
b
on
b
b
Φ
Φ
∆ω
∆ω
=
⋅
=
⇒
−
=
ω
ω
ω
;
(
)
2
22
43
Napęd elektryczny, sem. V
(2.25)
ostatecznie w dziedzinie operatorowej otrzymamy:
ω
ω
ω
( )
s
s Tm
s
Tm
s
Tm
b
p
=
⋅
⋅ +
+
+
1
1
Przechodz
ą
c do dziedziny czasowej, nale
ż
y skorzysta
ć
z twierdzenia o splocie,
funkcji otrzymuj
ą
c nast
ę
puj
ą
c
ą
zale
ż
no
ść
:
( )
ω
ω
ω
( )
t
e
e
b
t
Tm
p
t
Tm
=
−
+ ⋅
−
−
1
(2.26)
Wykres powy
ż
szej funkcji jest nast
ę
puj
ą
cy:
Równanie (2.26) mo
ż
emy te
ż
przedstawi
ć
w postaci nast
ę
puj
ą
cej:
(
)
ω
ω
ω ω
( )
t
e
b
p
b
t
Tm
=
+
−
⋅
−
(2.27)
44
Napęd elektryczny, sem. V
Podobnie znajdziemy równanie pr
ą
du korzystaj
ą
c z (2.23):
It s
sJ
k
s
J
k
k
Mb s
p
( )
( )
( )
=
⋅
−
⋅
+
⋅
Φ
Φ
Φ
ω
ω
1
przy czym:
Mb s
Mb
s
( )
=
Dokonuj
ą
c nast
ę
puj
ą
cych przekształce
ń
uwzgl
ę
dniaj
ą
c (2.25):
It s
sJ
k
s sTm
Tm
sTm
J
k
k
Mb
s
b
p
p
( )
(
)
=
⋅
⋅
+
+
⋅
+
−
⋅
+
⋅
Φ
Φ
Φ
ω
ω
ω
1
1
1
It s
J
k
sTm
J sTm sTm
k
sTm
k
Mb
s
b
p
( )
(
)
(
)
(
)
=
⋅
+
+
−
−
+
⋅
+
⋅
ω
ω
Φ
Φ
Φ
1
1
1
1
It s
J R k
R sTm
JR
k
R sTm
Ib
s
k
k
b
p
( )
(
)
(
)
= ⋅
+
+
+
+
2
2
1
1
Φ
Φ
Φ
Φ
ω
ω
23
45
Napęd elektryczny, sem. V
Uwzgl
ę
dniaj
ą
c zwi
ą
zki:
Otrzymamy:
U
k
R
Mb
o
b
o
b
b
k
Φ
Φ
Φ
∆ω
∆ω
=
⋅
=
⇒
−
=
ω
ω
ω
;
;
(
)
Ib =
Mb
k
2
It s
Tm
k
R
U
k
R
Mb
sTm
Tm
k
R
U
k
R
Mp
sTm
Ib
s
k
k
( )
(
)
(
)
=
⋅
−
⋅
+
−
−
⋅
−
⋅
+
+
Φ
Φ
Φ
Φ
Φ
Φ
2
2
1
1
It s
Tm
U
R
Ib
sTm
Tm
U
R
Ip
sTm
Ib
s
( )
=
−
+
−
−
+
+
1
1
46
Napęd elektryczny, sem. V
Otrzymamy ostatecznie (w dziedzinie operatorowej):
It s
Tm Ip Ib
sTm
Ib
s
TmIp
sTm
TmIb
sTm
Ib
s
( )
(
)
=
−
+
+
=
+
−
+
+
1
1
1
It s
Ip
s
Tm
Ib
sTm s
Tm
( )
=
+
+
+
1
1
(2.28)
a w dziedzinie czasowej:
(
)
It t
Ib
e
Ip e
t Tm
t Tm
( )
/
/
=
−
+
−
−
⋅
1
(2.29)
lub
It t
Ib
Ip Ib e
t Tm
( )
(
)
/
=
+
−
− ⋅
(2.30)
24
47
Napęd elektryczny, sem. V
48
Napęd elektryczny, sem. V
SILNIK OBCOWZBUDNY PR
Ą
DU STAŁEGO TYPU D818 Pn=185 kW; nn=435/870 obr/min;
Un=440V; Itn=460A; Rtc=0.0293
Ω
; Ltc=2.7mH; J=46kgm2; k
Φ
=9.363Vs/rad; Mn=4300Nm
ω
[rad/s]; 0.04
∗
It [A]
Mb=0; Ut=Un; Rtc=0.319
Ω
It
max
=3
∗
Itn
It
ω
25
49
Napęd elektryczny, sem. V
Rh=0.319
Ω
, J=Jns, Mb=Mn - bierny
Hamowanie dynamiczne
50
Napęd elektryczny, sem. V
Rh=0.657
Ω
, J=Jns, Mb=Mn - czynny
Hamowanie przeciwwł
ą
czeniem
26
51
Napęd elektryczny, sem. V
Stany przej
ś
ciowe w silniku obcowzbudnym z uwzgl
ę
dnieniem
elektromagnetycznej stałej czasowej
We
ź
my pod uwag
ę
układ równa
ń
(2.21) i (2.22):
U(s) = k
Φ⋅ω
(s) + R
⋅
It(s) + Lt
⋅
s
⋅
It(s)
(2.21)
J
⋅
s
⋅ω
(s) - J
⋅ω
(0) = k
Φ⋅
It(s) - Mb(s)
(2.22)
Układ równa
ń
(2.31) przekształcamy do postaci umo
ż
liwiaj
ą
cej
rozwi
ą
zanie metod
ą
wyznaczników:
J s
s
J
k
It s
Mb s
U s
k
s
R
sTt It s
R Tt It
⋅ ⋅
− ⋅
=
⋅
−
=
⋅
+
+
− ⋅ ⋅
ω
ω
ω
( )
( )
( )
( )
( )
( )
(
) ( )
( )
0
1
0
Φ
Φ
(2.31)
(2.32)
J s
s
k
It s
Mb s
J
k
s
R
sTt It s
U s
R Tt It
⋅ ⋅
−
⋅
= −
+ ⋅
⋅
+
+
=
+ ⋅ ⋅
ω
ω
ω
( )
( )
( )
( )
( )
(
) ( )
( )
( )
Φ
Φ
0
1
0
52
Napęd elektryczny, sem. V
(2.34)
(2.35)
(2.33)
Mian
J s
k
k
R
sTt
J s R
sTt
Mian
Tm s
M s
k
k
Tm Tt s
k
=
⋅
−
+
= ⋅ ⋅
+
+
=
+
⋅ + =
⋅
⋅ ⋅
Φ
Φ
Φ
Φ
Φ
(
)
(
)
)
( )
(
)
(
) (
(
)
1
1
1
2
2
2
2
gdzie: M(s) - równanie charakterystyczne silnika.
L
Mb s
J
k
U s
R Tt It
R
sTt
L
R
sTt
Mb s
J R
sTt
k
U s
k
R Tt It
( )
( )
( )
( )
( )
(
)
( )
(
)
( )
(
)
( )
( )
( )
ω
ω
ω
ω
=
−
+ ⋅
−
+ ⋅ ⋅
+
= −
+
⋅
+ ⋅
+
⋅
+
⋅
+
+
⋅ ⋅ ⋅
0
0
1
1
1
0
0
Φ
Φ
Φ
L It
J s
Mb s
J
k
U s
R Tt It
L It
J s U s
J R Tt s It
k
Mb s
k
J
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
=
⋅
−
+ ⋅
+ ⋅ ⋅
= ⋅ ⋅
+ ⋅ ⋅ ⋅ ⋅
+
⋅
−
−
⋅ ⋅
ω
ω
0
0
0
0
Φ
Φ
Φ
27
53
Napęd elektryczny, sem. V
(2.36)
W oparciu o wyznaczniki (2.33) i (2.34) znajdziemy równanie operatorowe
pr
ę
dko
ś
ci k
ą
towej silnika:
ω
ω
ω
ω
ω
ω
( )
( )
( ) /
( )
(
) ( )
( )
/
(
)
( )
( )
/
( )
( )
( )
( )
( )
(
)
( )
( )(
)
( )
( )
(
)
s
L
Mian
U s
k
M s
Tm
sTt
M s
R
sTt Mb s
M s
R k
Tt It
M s
s
s
M s
Tm
sTt
M s
s
sTt
M s
M s
Tt
k
o
p
b
p
=
=
+
+
−
−
+
+
⋅ ⋅
=
+
+
⋅
−
+
+
+
Φ
Φ
Φ
∆ω
∆ω
1
0
1
0
1
1
2
54
Napęd elektryczny, sem. V
(2.37)
Natomiast w oparciu o wyznaczniki (2.33) i (2.35) znajdziemy równanie
operatorowe pr
ą
du twornika silnika:
It s
L It
Mian
U s J s
M s
s Tt It
J R
M s
Mb s
k
M s
J k
M s
It s
Tm s Itz s
M s
Tm Tt s It
M s
Ib s
M s
J k
M s
k
k
( )
( )
( )
/
( )
( )
/
( )
( ) /
( )
/
( )
( )
( )
( )
( )
( )
( )
( )
( )
/
( )
( )
(
)
(
)
=
=
⋅ ⋅
+ ⋅ ⋅
⋅ ⋅
+
+
−
=
⋅ ⋅
+
⋅ ⋅ ⋅
+
−
2
2
0
0
0
0
Φ
Φ
Φ
Φ
Φ
ω
ω
28
55
Napęd elektryczny, sem. V
(2.38)
Rozruch jałowy silnika:
Mb=0;
ω
(0)=0; It(0)=0; U(s)=U/s
∆>
0
Równanie pr
ę
dko
ś
ci ma posta
ć
:
ω
ω
ω
( )
( )
( )
(
)(
)
s
U
k
s M s
s M s
s Tm Tt s s
s s
o
o
=
⋅ ⋅
=
⋅
=
⋅
⋅ ⋅ −
−
Φ
1
2
ω
ω
ω
ω
( )
(
)
(
)
t
Tm Tt s s
Tm Tt s
s
s
e
Tm Tt s
s
s
e
o
o
s t
o
s t
=
⋅ ⋅ ⋅
+
⋅ ⋅ ⋅
−
+
+
⋅ ⋅ ⋅
−
⋅
⋅
1 2
1
1
2
2
2
1
1
2
s s
Tm Tt
1 2
1
⋅ =
⋅
Łatwo mo
ż
emy wykaza
ć
, i
ż
:
ω
ω
ω
ω
( )
t
s
s
s
e
s
s
s
e
o
o
s t
o
s t
=
+
−
−
−
⋅
⋅
2
1
2
1
1
2
1
2
(2.39)
(
)
ω
ω
( )
t
s
s
s e
s e
o
s t
s t
=
+
−
⋅
− ⋅
⋅
⋅
1
1
1
2
2
1
1
2
lub
56
Napęd elektryczny, sem. V
(2.41)
Badaj
ą
c przebieg zmienno
ś
ci funkcji okre
ś
limy punkt przegi
ę
cia:
lub
(2.42)
lub
tp
s
s
s
s
=
−
1
1
2
2
1
ln
(2.40)
Podobnie dla równania pr
ą
du:
It s
Tm s Itz s
M s
Tm Itz
Tm Tt s s
s s
( )
( )
( )
(
)(
)
=
⋅ ⋅
=
⋅
⋅
−
−
1
2
Itz
U
R
const
Itz s
Itz
s
=
=
=
.
( )
, wię c
It s
Itz
Tt s s
s s
( )
(
)(
)
=
⋅ −
−
1
2
It t
Itz
Tt s
s
e
s
s
e
s t
s t
( )
=
−
+
−
⋅
⋅
1
1
2
1
2
1
1
2
(
)
It t
Itz
Tt s
s
e
e
s t
s t
( )
(
)
=
−
−
⋅
⋅
1
2
1
2
29
57
Napęd elektryczny, sem. V
(2.44)
Szukaj
ą
c ekstrema tej funkcji otrzymamy maksimum dla:
tp
s
s
s
s
=
−
1
1
2
2
1
ln
(2.43)
zauwa
ż
my, i
ż
tp=tm
tm
s
s
s
s
=
−
1
1
2
2
1
ln
It tm
It
Itz
Tt s
s
s
s
s
s
s
s
s
s
s
s
e
e
(
)
max
(
)
ln
ln
=
=
−
−
−
−
1
2
1
1
2
2
1
2
1
2
2
1
58
Napęd elektryczny, sem. V
Mo
ż
na wykaza
ć
, i
ż
It(tm)<Itz
W przypadku, gdy pierwiastki równania charakterystycznego transmitancji
silnika s
ą
liczbami zespolonymi to przebiegi pr
ę
dko
ś
ci i pr
ą
du twornika b
ę
d
ą
miały charakter oscylacyjny.
30
59
Napęd elektryczny, sem. V
SILNIK OBCOWZBUDNY PR
Ą
DU STAŁEGO TYPU D818 Pn=185 kW; nn=435/870 obr/min;
Un=440V; Itn=460A; Rtc=0.0293
Ω
; Ltc=2.7mH; J=46kgm2; k
Φ
=9.363Vs/rad; Mn=4300Nm
ω
[rad/s]; 0.04
∗
It [A]
Mb=0; Ut=Un; Rtc=0.319
Ω
It
max
=3
∗
Itn
It
ω
Przykład rozruchu przy pomini
ę
ciu elektromagnetycznej stałej czasowej
60
Napęd elektryczny, sem. V
Rozruch przy obci
ąż
eniu momentem biernym:
Mb=const. (bierny)
Tm>4Tt
Rozruch mo
ż
emy podzieli
ć
na dwa etapy:
a) M
≤
Mb
b) M>Mb
a) Etap pierwszy
Silnik jest nieruchomy
(
) (
)
U s
R
s Tt It s
It s
U s
R
s Tt
U
R s
s Tt
It t
U
R
e
Itz
e
t Tt
t Tt
( )
(
) ( )
( )
( )
(
)
(
)
( )
/
/
=
+ ⋅
=
+ ⋅
=
+ ⋅
=
−
=
−
−
−
1
1
1
1
1
1
(2.45)
Z tego równania wyznaczmy czas martwy, po którym pr
ą
d osi
ą
gnie warto
ść
Itb:
(
)
It t
Itb
Itz
e
t
Tt
Itz
Itz Itb
to Tt
( )
ln
/
0
0
1
=
=
−
=
⋅
−
−
(2.46)
31
61
Napęd elektryczny, sem. V
b) Etap drugi
ω
>0; M>Mb;
ω
(0)=0; It(0)=Itb
(2.47)
i dokonuj
ą
c przekształce
ń
otrzymamy:
(2.48)
It s
Tm s Itz s
M s
Itb s
M s
Tm Tt s It
M s
( )
( )
( )
( )
( )
( )
( )
=
⋅ ⋅
+
+
⋅ ⋅ ⋅
0
Uwzgl
ę
dniaj
ą
c
Itz s
Itz
s
Itb s
Itb
s
( )
;
( )
=
=
It s
Itz
Tt s s
s s
Itb
s
Itb
Tt s s
s s
( )
(
)(
)
(
)(
)
=
−
−
+
−
−
−
1
2
1
2
(
)
It t
Itb
Itz Itb
Tt s
s
e
e
s t
s t
( )
(
)
=
+
−
−
−
⋅
⋅
1
2
1
2
(2.49)
Znajduj
ą
c ekstremum tej zale
ż
no
ś
ci otrzymamy znan
ą
ju
ż
posta
ć
(porównaj z (2.43)):
62
Napęd elektryczny, sem. V
(2.50)
(2.51)
Podobnie znajdziemy równanie pr
ę
dko
ś
ci silnika:
otrzymamy:
tm
s
s
s
s
=
−
1
1
2
2
1
ln
It tm
It
Itb
Itz Itb
Tt s
s
s
s
s
s
s
s
s
s
s
s
e
e
(
)
max
(
)
ln
ln
=
=
+
−
−
−
−
−
1
2
1
1
2
2
1
2
1
2
2
1
U s
U
s
Mb s
Mb
s
Itb
( )
;
( )
;
)
;
( )
=
=
=
=
It(
0
0
0
ω
( )
ω
( )
( )
(
)
( )
( )
s
U
k
s M s
R
sTt Mb
k
s M s
R Tt Itb
k
M s
=
⋅ ⋅
−
+
⋅ ⋅
+ ⋅ ⋅
⋅
Φ
Φ
Φ
1
2
Podstawiaj
ą
c:
( )
( )
b
U
k
R
k
Mb
R
k
Mb
R
k
Itb
ω =
−
=
Φ
Φ
Φ
Φ
2
2
;
32
63
Napęd elektryczny, sem. V
(2.52)
(2.53)
Posta
ć
tego równania jest analogiczna jak przy rozruchu jałowym, wi
ę
c:
(2.54)
ω
ω
ω
( )
( )
(
)(
)
s
s M s
s Tm Tt s s
s s
b
b
=
⋅
=
⋅
⋅ ⋅ −
−
1
2
(
)
ω
ω
( )
t
s
s
s e
s e
b
s t
s t
=
+
−
⋅
− ⋅
⋅
⋅
1
1
1
2
2
1
1
2
oraz
tp
s
s
s
s
tm
=
−
=
1
1
2
2
1
ln
64
Napęd elektryczny, sem. V
Rozruch silnika przy momencie aktywnym:
Zanim moment elektromagnetyczny rozwijany przez silnik nie stanie si
ę
wi
ę
kszy
od aktywnego momentu oporowego Mb silnik mo
ż
e obraca
ć
si
ę
w kierunku
przeciwnym do zamierzonego.
Równania czasowe na pr
ą
d i pr
ę
dko
ść
silnika posiadaj
ą
nast
ę
puj
ą
c
ą
posta
ć
:
(2.55)
(2.56)
It t
Itb
s
s
Itz
Tt
s
Itb e
Itz
Tt
s Itb e
s t
s t
( )
=
+
−
+ ⋅
−
+ ⋅
⋅
⋅
1
1
2
2
1
1
2
(
)
(
)
ω
ω
( )
t
s
s
s e
s e
s s
Tt
s
s
e
e
b
s t
s t
b
s t
s t
=
+
−
⋅
− ⋅
−
− ⋅ ⋅ ⋅
−
−
⋅
⋅
⋅
⋅
1
1
1
2
2
1
1 2
1
2
1
2
1
2
∆ω
33
65
Napęd elektryczny, sem. V
SILNIK OBCOWZBUDNY PR
Ą
DU STAŁEGO TYPU D818 Pn=185 kW; nn=435/870 obr/min;
Un=440V; Itn=460A; Rtc=0.0293
Ω
; Ltc=2.7mH; J=46kgm2; k
Φ
=9.363Vs/rad; Mn=4300Nm
Mb=0
Mb=Mn
It
It
ω
ω
66
Napęd elektryczny, sem. V
SILNIK OBCOWZBUDNY PR
Ą
DU STAŁEGO TYPU D818 Pn=185 kW; nn=435/870 obr/min;
Un=440V; Itn=460A; Rtc=0.0293
Ω
; Ltc=2.7mH; J=46kgm2; k
Φ
=9.363Vs/rad; Mn=4300Nm
Mb=0
Mb=Mn
It
It
ω
ω
34
67
Napęd elektryczny, sem. V
SILNIK OBCOWZBUDNY PR
Ą
DU STAŁEGO TYPU D818 Pn=185 kW; nn=435/870 obr/min;
Un=440V; Itn=460A; Rtc=0.0293
Ω
; Ltc=2.7mH; J=46kgm2; k
Φ
=9.363Vs/rad; Mn=4300Nm
Mb=10*Mn - czynny
It
It
ω
ω
Mb=10*Mn - czynny
68
Napęd elektryczny, sem. V
Hamowanie silnika obcowzbudnego pr
ą
du stałego
Hamowanie dynamiczne
Φ
⋅
−
=
k
I
R
U
t
tc
t
s
ω
R
k
U
R
E
U
I
tc
s
t
tc
t
t
Φ
−
=
−
=
ω
R
R
I
h
tc
th
E
+
−
=
, gdy
ż
U=0
( )
R
R
k
I
k
M
h
tc
th
h
+
⋅
−
=
⋅
=
Φ
Φ
ω
2
35
69
Napęd elektryczny, sem. V
Hamowanie silnika obcowzbudnego pr
ą
du stałego
Hamowanie dynamiczne
gdzie: R1>R2>R3
R
I
k
R
I
E
R
tc
th
tc
th
h
−
Φ
⋅
−
=
−
−
=
max
max
ω
przy czym:
(
)
I
I
tn
th
3
2
max
÷
=
Uwaga! Pr
ą
d I
th
jest ujemny!
Mo
ż
emy stopniowa
ć
rezystancj
ę
hamowa-
nia zmieniaj
ą
c Rh.
Tak pracuj
ą
cy nap
ę
d
mo
ż
e te
ż
by
ć
wyko-
rzystywany do opusz-
czania
ci
ęż
arów.
Silnik wtedy pracuje
jako pr
ą
dnica obcow-
zbudna
obci
ąż
ona
rezystancj
ą
.
Przy hamowaniu dynamicznym i biernym
momencie oporowym silnik zatrzyma si
ę
samoistnie,
bez
stosowania
ż
adnych
dodatkowych zabiegów.
70
Napęd elektryczny, sem. V
Hamowanie silnika obcowzbudnego pr
ą
du stałego
Stany przej
ś
ciowe podczas hamowania dynamicznego
Poniewa
ż
w czasie hamowania wł
ą
czana jest w obwód twornika rezystancja
dodatkowa Rh, wi
ę
c elektromagnetyczn
ą
stał
ą
czasow
ą
Tt mo
ż
emy pomin
ąć
:
Mb=const.
( )
(
)
e
e
t
Tm
t
p
Tm
t
b
/
/
1
−
−
+
−
=
ω
ω
ω
( )
(
)
e
I
e
I
I
Tm
t
p
Tm
t
b
t
t
/
/
1
−
−
+
−
=
ω
b
=0
I
b
=0
ω
p
=
ω
sb
I
p
=I
thmax
0
>
Φ
⋅
−
=
k
I
R
U
tsb
tc
t
sb
ω
0
max
<
+
−
=
R
R
I
h
tc
th
E
( )
e
Tm
t
sb
t
/
−
⋅
=
ω
ω
( )
e
R
R
I
Tm
t
h
tc
t
E
t
/
−
⋅
+
−
=
(
)
( )
Φ
+
=
k
R
R
J
T
h
tc
m
2
36
71
Napęd elektryczny, sem. V
Hamowanie silnika obcowzbudnego pr
ą
du stałego
Hamowanie dynamiczne
ω
[rad/s]
Rh=0.319
Ω
, J=Jns, Mb=Mn -
bierny
It [A]
3Itn
SILNIK OBCOWZBUDNY PR
Ą
DU STAŁEGO TYPU D818 Pn=185 kW; nn=435/870 obr/min;
Un=440V; Itn=460A; Rtc=0.0293
Ω
; Ltc=2.7mH; J=46kgm2; k
Φ
=9.363Vs/rad; Mn=4300Nm
72
Napęd elektryczny, sem. V
Hamowanie silnika obcowzbudnego pr
ą
du stałego
Hamowanie dynamiczne
ω
[rad/s]; 0.1*It [A]
[s]
ω
It
0.50
SILNIK OBCOWZBUDNY PR
Ą
DU STAŁEGO TYPU D818 Pn=185 kW; nn=435/870 obr/min;
Un=440V; Itn=460A; Rtc=0.0293
Ω
; Ltc=2.7mH; J=46kgm2; k
Φ
=9.363Vs/rad; Mn=4300Nm
37
73
Napęd elektryczny, sem. V
Hamowanie silnika obcowzbudnego pr
ą
du stałego
Hamowanie dynamiczne
SILNIK OBCOWZBUDNY PR
Ą
DU STAŁEGO TYPU D818 Pn=185 kW; nn=435/870 obr/min;
Un=440V; Itn=460A; Rtc=0.0293
Ω
; Ltc=2.7mH; J=46kgm2; k
Φ
=9.363Vs/rad; Mn=4300Nm
ω
[rad/s]
Rh=0.319
Ω
, J=Jns, Mb=Mn -
czynny
It [A]
3Itn
74
Napęd elektryczny, sem. V
Hamowanie silnika obcowzbudnego pr
ą
du stałego
Hamowanie dynamiczne
SILNIK OBCOWZBUDNY PR
Ą
DU STAŁEGO TYPU D818 Pn=185 kW; nn=435/870 obr/min;
Un=440V; Itn=460A; Rtc=0.0293
Ω
; Ltc=2.7mH; J=46kgm2; k
Φ
=9.363Vs/rad; Mn=4300Nm
ω
[rad/s]; 0.1*It [A]
0.50
ω
It
[s]
38
75
Napęd elektryczny, sem. V
Hamowanie silnika obcowzbudnego pr
ą
du stałego
Hamowanie przeciwwł
ą
czeniem (przeciwpr
ą
dem)
Φ
⋅
−
=
k
I
R
U
t
tc
t
s
ω
R
k
U
R
E
U
I
tc
s
t
tc
t
t
Φ
−
=
−
=
ω
R
k
U
R
E
U
I
tc
s
t
tc
t
t
Φ
−
=
−
=
ω
(
)
I
I
tn
th
3
2
max
÷
=
76
Napęd elektryczny, sem. V
Hamowanie silnika obcowzbudnego pr
ą
du stałego
Hamowanie przeciwwł
ą
czeniem (przeciwpr
ą
dem)
R1>R2>R3
Przy hamowaniu przeciwwłaczeniem silnik sam si
ę
nie zatrzyma po osi
ą
gni
ę
ciu zerowej pr
ę
d-
ko
ś
ci, chyba
ż
e bierny moment oporowy b
ę
dzie wi
ę
kszy od momentu rozwijanego przez silnik.
W przypadku aktywnego momentu oporowego istnieje niebezpiecze
ń
stwo ustalenia si
ę
pr
ę
d-
ko
ś
ci du
ż
o wi
ę
kszej od pr
ę
dko
ś
ci biegu jałowego. Z tego powodu po zahamowaniu silnika
nale
ż
y wył
ą
czy
ć
silnik.
39
77
Napęd elektryczny, sem. V
Hamowanie silnika obcowzbudnego pr
ą
du stałego
Hamowanie przeciwwł
ą
czeniem (przeciwpr
ą
dem)
Rozpatruj
ą
c stany przej
ś
ciowe przy hamowaniu przeciwwł
ą
czeniem w obliczeniach
in
ż
ynierskich z powodzeniem mo
ż
emy pomin
ąć
stał
ą
czasow
ą
Tt:
( )
(
)
e
e
t
Tm
t
p
Tm
t
b
/
/
1
−
−
+
−
=
ω
ω
ω
( )
(
)
e
I
e
I
I
Tm
t
p
Tm
t
b
t
t
/
/
1
−
−
+
−
=
Mb=const. (czynny)
0
1
>
Φ
⋅
−
=
=
k
I
R
U
tsb
tc
t
bs
p
ω
ω
0
1
max
<
+
−
=
Φ
−
=
R
R
k
U
I
I
h
tc
bs
t
th
p
ω
(
)
0
2
<
Φ
⋅
+
−
=
−
=
k
I
R
R
U
tsb
h
tc
t
bs
b
ω
ω
0
>
Φ
=
=
k
M
I
I
b
tb
b
( )
(
)
e
e
t
Tm
t
bs
Tm
t
bs
/
1
/
2
1
−
−
+
−
=
ω
ω
ω
( )
(
)
e
I
e
I
I
Tm
t
th
Tm
t
tb
t
t
/
max
/
1
−
−
+
−
=
(
)
( )
Φ
+
=
k
R
R
J
T
h
tc
m
2
78
Napęd elektryczny, sem. V
Hamowanie silnika obcowzbudnego pr
ą
du stałego
Hamowanie przeciwwł
ą
czeniem (przeciwpr
ą
dem)
SILNIK OBCOWZBUDNY PR
Ą
DU STAŁEGO TYPU D818 Pn=185 kW; nn=435/870 obr/min;
Un=440V; Itn=460A; Rtc=0.0293
Ω
; Ltc=2.7mH; J=46kgm2; k
Φ
=9.363Vs/rad; Mn=4300Nm
ω
[rad/s]
It [A]
3Itn
Rh=0.657
Ω
, J=Jns, Mb=Mn - czynny
40
79
Napęd elektryczny, sem. V
Hamowanie silnika obcowzbudnego pr
ą
du stałego
Układ hamowania przeciwpr
ą
dem mo
ż
e słu
ż
y
ć
do opuszczania ci
ęż
arów z mał
ą
pr
ę
dko
ś
ci
ą
.
Hamowanie takie powoduje, i
ż
silnik pobiera moc elektryczn
ą
z sieci zasilaj
ą
cej
oraz moc mechaniczn
ą
od maszyny roboczej. Cz
ęść
pobranej mocy wydzielana
jest w rezystorze Rd, pozostała cz
ęść
w tworniku silnika. Z tego powodu przy
długotrwałym, czy cz
ę
stym hamowaniu (opuszczaniu) wymagane jest
chłodzenie obce silnika.
80
Napęd elektryczny, sem. V
Silnik obcowzbudny pr
ą
du stałego
Oznaczenia zacisków silnika:
oznaczenia nowe
oznaczenia starsze
41
81
Napęd elektryczny, sem. V
Silnik obcowzbudny pr
ą
du stałego
Statyczne cechy obcowzbudnego silnika pr
ą
du stałego
Charakterystyka mechaniczna:
Φ
−
=
k
I
R
U
t
tc
t
ω
przy czym
Φ
=
k
M
I
t
Φ
−
=
k
I
R
U
n
tn
tc
tn
n
ω
Wyznaczanie rezystancji obwodu twornika:
(
)
η
n
tn
tn
tc
I
U
R
−
⋅
=
1
5
,
0
przy zało
ż
eniu, i
ż
∆
P
Cun
=50%
∆
P
n
82
Napęd elektryczny, sem. V
Silnik szeregowy pr
ą
du stałego
It=Iw
(
)
η
n
tn
tn
tc
I
U
R
−
⋅
=
1
75
,
0
przy zało
ż
eniu, i
ż
∆
P
Cun
=75%
∆
P
n
Silnik szeregowy jest opisany nast
ę
puj
ą
cym
układem równa
ń
:
−
=
+
⋅
+
=
)
(
)
(
)
(
)
(
)
(
)
(
)
(
t
Mb
t
M
dt
t
d
J
dt
t
dI
L
Rtc
t
I
t
E
t
U
ω
gdzie:
L – całkowita indukcyjno
ść
obwodu twornika
E(t)=k
Φ
(I)
⋅ω
(t)
Wyznaczanie rezystancji twornika:
0
)
(
=
dt
t
dI
0
)
(
=
dt
t
d
ω
W stanie ustalonym
oraz
, wi
ę
c
[
]
Rtc
I
k
M
I
k
U
I
k
Rtc
I
I
k
U
⋅
Φ
−
Φ
=
Φ
⋅
−
Φ
=
)
(
)
(
)
(
)
(
2
ω
42
83
Napęd elektryczny, sem. V
Silnik szeregowy pr
ą
du stałego
Zwykle
jednoznacznie
nie
mo
ż
emy
wyznaczy
ć
tych charakterystyk, gdy
ż
nie
znamy krzywej magnesowania.
Ze wzgl
ę
du na przebieg charakterystyk
silniki szeregowe pr
ą
du stałego znalazły
zastosowanie
w
trakcji
elektrycznej
(tramwaje, trolejbusy, poci
ą
gi elektryczne,
elektrowozy, urz
ą
dzenia wyci
ą
gowe du
ż
ej
mocy, wózki akumulatorowe, samochody
elektryczne).
Charakterystyki sztuczne uzyskujemy poprzez regulacj
ę
Ut lub wtr
ą
canie w obwód
twornika rezystancji dodatkowych. Mo
ż
liwe jest tak
ż
e osłabianie strumienia poprzez
bocznikowanie rezystancj
ą
szeregowego uzwojenia wzbudzenia maszyny.
Poniewa
ż
dla tego silnika nie mo
ż
emy jednoznacznie wyznaczy
ć
zale
ż
no
ś
ci
analitycznych okre
ś
laj
ą
cych charakterystyki mechaniczne, w katalogach s
ą
zamieszczane charakterystyki
ω
=f(I) oraz M=f(I) i w oparciu o nie przeprowadza
si
ę
obliczenia. Te charakterystyki uwzgl
ę
dniaj
ą
reakcj
ę
twornika stanowi
ą
c lepsz
ą
baz
ę
do oblicze
ń
. Zakres stosowanych mocy od setek watów do kilku-,
kilkunastu megawatów.
84
Napęd elektryczny, sem. V
Wyprowadzenie tej zale
ż
no
ś
ci mo
ż
na znale
źć
w materiałach
Silnik szeregowy pr
ą
du stałego - charakterystyki sztuczne
W celu obliczenia Rd z charakterystyki
katalogowej (na charakterystyce naturalnej)
dla
żą
danej
warto
ś
ci
momentu
Mx
znajdujemy odpowiadaj
ą
cy mu pr
ą
d Ix oraz
pr
ę
dko
ść
ω
nx
.
Rezystancj
ę
dodatkow
ą
obliczamy za
ś
z zale
ż
no
ś
ci:
−
−
=
ω
ω
nx
x
Rtc
Ix
Utn
Rd
1
43
85
Napęd elektryczny, sem. V
Silnik szeregowy pr
ą
du stałego - charakterystyki sztuczne
Przy regulacji napi
ę
ciem mamy:
)
(
)
(
I
k
Rtc
I
I
k
Utx
x
Φ
⋅
−
Φ
=
ω
86
Napęd elektryczny, sem. V
Silnik szeregowy pr
ą
du stałego - hamowanie
Hamowanie dynamiczne
Realizowane analogicznie jak dla silnika obcowzbudnego pr
ą
du stałego, z tym
ż
e
obwód wzbudzenia zasilamy z obcego
ź
ródła.
Hamowanie przeciwwł
ą
czeniem
44
87
Napęd elektryczny, sem. V
Silnik szeregowy pr
ą
du stałego - hamowanie
Hamowanie przeciwwł
ą
czeniem
88
Napęd elektryczny, sem. V
Układy rozruchu oraz regulacji pr
ę
dko
ś
ci układów z OMPS
• Poprzez wtr
ą
cenie rezystancji dodatkowej do obwody twornika
– aktualnie nie stosowane, du
ż
e straty energii
• Poprzez zmian
ę
napi
ę
cia zasilaj
ą
cego obwód twornika
– układ Leonarda (elektromaszynowy oraz przekształtnikowy)
• Poprzez zmian
ę
strumienia
– tzw. II strefa regulacji pr
ę
dko
ś
ci
Φ
⋅
−
=
k
I
R
U
t
tc
t
s
ω