background image

Podstawy teorii błędów i niepewności pomiarów 

Błąd, dokładność, niepewność wyniku pomiaru

Nie jest możliwe określenie wartości prawdziwej wielkości mierzonej, ponieważ
rezultat pomiaru zawsze jest obarczony błędem. 
Pomiar nie uzupełniony oszacowaniem błędu jest bezwartościowy. 
Teoria błędów ma znaczenie kluczowe dla miernictwa. 

W 1993 roku Międzynarodowa Organizacja Normalizacyjna (International
Standards Organization, 
ISO) wydała opracowanie zatytułowane Guide to the
Expression of Uncertainty in Measurement (Wyrażanie niepewności 
pomiarów - przewodnik
)

Wielkość mierzona jest nazywana mezurandem, 
wynik pomiaru jest estymatą wartości prawdziwej, a z kolei estymata jest 

wartością estymatora otrzymaną jako rezultat estymacji. 

Wykładnia przewodnika ISO jest w pewnym sensie obowiązującym prawem 
(choćby dlatego, że jest zaleceniem Międzynarodowego Biura Miar oraz polskiego 
Głównego Urzędu Miar).

background image

Przewodnik ustala ogólnie obowiązujące zasady obliczania i wyrażania 

niepewności pomiaru, które mogą być stosowane dla wszystkich pomiarów 
fizycznych, niniejszy dokument przedstawia metody właściwe
dla pomiarów wykonywanych w laboratoriach zajmujących się wzorcowaniem
i opisuje jednoznaczny, zharmonizowany sposób wyznaczania i dokumentowania
niepewności pomiaru. 

Dokument zawiera omówienie następujących tematów:
• definicje istotne dla dokumentu,
• metody obliczania niepewności pomiaru wielkości wejściowych,
• związek pomiędzy niepewnością pomiaru wielkości wyjściowej oraz 
niepewnością pomiaru wielkości wejściowych,
• niepewność rozszerzona pomiaru wielkości wyjściowej,
• podawanie niepewności pomiaru,
• szczegółowa procedura obliczania niepewności pomiaru.

background image

Podany wynik pomiaru tylko wtedy jest kompletny, gdy zawiera zarówno 
wartość wielkości mierzonej, jak i niepewność pomiaru, związaną z tą
wartością.

Wszystkie wielkości, których wartości nie są dokładnie znane, będą traktowane 
jako zmienne losowe; dotyczy to również wszystkich wielkości wpływających, 
które mogą oddziaływać na wartość mierzoną.

Niepewność pomiaru jest parametrem związanym z wynikiem pomiaru

charakteryzującym rozrzut wartości, które można w sposób uzasadniony 
przypisać wielkości mierzonej .

Wielkości mierzone są szczególnymi wielkościami, których wartość należy 

określić poprzez pomiar. Przy wzorcowaniu mamy zwykle do czynienia tylko z 
jedną wielkością mierzoną, nazywaną również wielkością wyjściową Y, która 
jest związana
z  wielkościami wejściowymi Xi (= 1, 2,..., N)  funkcją

Y = f (X1 X2, ..., XN)

Funkcja pomiaru opisuje zarówno metodę pomiarową jak i metodę
obliczeniową.

background image

Pomiar jest wykonywany z określona dokładnością . 
Oznacza to, że nie jest możliwy pomiar bezbłędny i zawsze zmierzona wartość
jest znana z określonym błędem. Wynik pomiaru powinno się więc zapisywać
w postaci (1) 

Wykonaliśmy  pomiar z niedokładnością (błędem) równym np. 0,01%. 
Pomiar zrobiono z błędem nie przekraczającym 0,01%", a można też mówić
„pomiar zrobiono z niepewnością 0,01%".

Xp wartość wielkości rzeczywistej
ΔX – błąd bezwzględny pomiaru

Niedokładność pomiaru można wyrażać przez pojęcie niepewności określenia 
wyniku pomiaru

X

X

X

p

Δ

±

=

background image

Zbiór wartości wejściowych Xi może być podzielony na dwie kategorie w zależności
od sposobu, w jaki zostały określone wartości tych wielkości i związane z nimi
niepewności:

(a) wielkości, których estymaty oraz związane z nimi niepewności wyznaczone są
bezpośrednio z pomiaru. 
Wartości te można uzyskać np. z pojedynczej obserwacji, powtarzanych obserwacji 
albo na podstawie oceny opartej na doświadczeniu.

(b) wielkości, których estymaty oraz związane z nimi niepewności są wprowadzane
do funkcji pomiaru ze źródeł zewnętrznych, jak np.: wielkości związane
z wzorcami jednostek miar, certyfikowanymi materiałami odniesienia lub danymi
odniesienia otrzymanymi z literatury specjalistycznej.

Estymatę wielkości mierzonej Yoznaczoną y  i nazwaną estymatą wielkości

wyjściowej, otrzymuje się z równania poprzez podstawienie estymat wielkości
wejściowych  xi 
w miejsce wartości wielkości mierzonych Xi.

y = f (x1, x2, ..., xN)

background image

Przyjmuje się, że wartości wejściowe są najlepszymi estymatami wielkości
wejściowych, które zostały odpowiednio skorygowane z uwzględnieniem 
wszystkich istotnych oddziaływań dla danego modelu pomiaru.

W przeciwnym przypadku do modelu matematycznego pomiaru należy 

wprowadzić odpowiednie poprawki jako osobne wielkości wejściowe.

Miarą rozrzutu wartości przypisanych wielkości mierzonej, traktowanych jako 

zmienna losowa, jest wariancja ich rozkładu lub jej pierwiastek kwadratowy, 
nazywany odchyleniem standardowym

Niepewność standardowa pomiaru związana z estymatą wielkości 
wyjściowej lub wynikiem pomiaru, oznaczona  u(yjest odchyleniem 
standardowym wielkości mierzonej Y.

Określa się ją na podstawie estymat xi wielkości wejściowych Xi oraz na 

podstawie związanych z nimi niepewności standardowych u(xi).

W niektórych przypadkach uzasadnione jest stosowanie względnej 
niepewności standardowej pomiaru

background image

Zalecenia przewodnika ISO opierają się na założeniu, że każdy wynik pomiaru 
jest znany z możliwą do określenia niepewnością. 
Równanie (1)  możemy przepisać w postaci

Wynik pomiaru jest zawarty w przedziale ±ΔX wokół wartości prawdziwej Xp
(ΔX jest błędem bezwzględnym pomiaru).

Zgodnie z zaleceniami przewodnika ISO tę samą zależność powinniśmy 

zapisywać jako (2)

co odczytujemy: wynik pomiaru jest zawarty w przedziale niepewności ±u
wokół wartości estymowanej Xo z poziomem ufności (1 — α)

(α -prawdopodobieństwo, że wartość prawdziwa leży poza przedziałem 

niepewności )
Między równaniami istnieje kilka zasadniczych różnic. 
Błąd pomiaru ΔX został zastąpiony pojęciem niepewności pomiaru u
Do określenia błędów wykorzystujemy teorię prawdopodobieństwa. 

Większość wyników pomiarów ma charakter stochastyczny, co może być

spowodowane, na przykład, wpływem trudnych do ustalenia zakłóceń. 

X

X

X

p

Δ

±

=

X

X

X

X

X

p

p

Δ

+

Δ

u

u

X

X

u

X

P

o

o

+

1

)

(

background image

Zamiast wartości prawdziwej Xp (której nigdy nie znamy) wprowadza się więc 
pojęcie wartości estymowanej (przewidywanej Xo). 

Wartość estymowana może być określana przy wykorzystaniu rachunku 
prawdopodobieństwa - na przykład jako wartość średnia z wielu pomiarów.

Każdy pomiar jest obarczony błędem przypadkowym. 
Np. nawet bardzo dokładny przyrząd cyfrowy jest obarczony niepewnością
u = ±0,5 LSB (LSB - najmniej znaczący bit). 

Jeśli więc woltomierz cyfrowy wskaże wartość: 4,9996 V, to równie prawdopodobne 
są wszystkie wartości zawarte między 4,99955  a  4,99965.

Przypuśćmy, że w wyniku przeprowadzenia serii pomiarów otrzymaliśmy zestaw 
danych, na przykład w postaci tabeli lub rysunku . 
Wstępnie możemy wyniki pomiarów szybko przeanalizować, konstruując  np.. 
histogram. 

background image

Seria wyników pomiaru: a) zapis w postaci rysunku, b) histogram

Na podstawie histogramu możemy łatwo oszacować, w jakim zakresie wynik 
pomiaru mieści się najczęściej. 

Środek tego zakresu można uznać za wartość estymowaną - bardzo często jest ona 
zgodna z wartością średnią serii pomiarów. Na podstawie kształtu histogramu (np. 
jego szerokości) wnioskujemy o zakresie niepewności rezultatu pomiaru.

background image

Histogram: a) wysokość słupka F

k

f

k

Δx, 

b) łączne występowanie wszystkich wartości od najmniejszej do danej

Wyniki serii pomiarów zamiast w postaci histogramu możemy przedstawiać jako 
rozkład prawdopodobieństwa wystąpienia danego wyniku.

Na osi pionowej podajemy wówczas gęstość prawdopodobieństwa f(x)

wystąpienia określonego wyniku pomiaru.

Podaje się też niekiedy krzywą dystrybuanty F(x) wystąpienia danego wyniku .

background image

Najczęściej rozkład prawdopodobieństwa opisuje się krzywą rozkładu 
normalnego, 
nazywaną też krzywą Gaussa. 

Porównanie rysunków wskazuje, że krzywa gęstości prawdopodobieństwa 
odpowiada histogramowi a,    a  krzywa dystrybuanty -histogramowi b.

Przykład krzywej funkcji rozkładu normalnego: a) przebieg gęstości 

prawdopodobieństwa f(t), b) przebieg dystrybuanty F(t)

background image

Gęstość prawdopodobieństwa f(x) określa się jako pochodną dystrybuanty 
F(x), Dystrybuanta oznacza prawdopodobieństwo , że zmienna losowa 
przyjmuje wartość mniejszą lub równą x.

f(x)=dF(x)/dx

F(x)=P(X<=x)

Rozkład Gaussa określony jest za pomocą równania

]

)

(

2

1

exp[

2

1

)

(

2

σ

μ

π

σ

=

x

x

f

σ – odchylenie standardowe rozkładu normalnego μ- wartość oczekiwana, 
estymowana

Dla rozkładu normalnego wartość μ pokrywa się osią symetrii krzywej Gaussa 
i dla nieskończonej liczby pomiarów określona jest wzorem. Dla skończonej 
liczby pomiarów μ równa się średniej arytmetycznej.

=

dx

x

f

x

)

(

μ

=

=

n

i

i

x

n

x

1

1

background image

Odchylenie standardowe σ jest ważnym parametrem określającym niepewnośc
pomiaru , oblicza się go jako pierwiastek z wariancji dla skończonej liczby 
pomiarów

=

=

n

i

i

x

x

n

1

2

)

(

1

1

σ

Odchylenie standardowe określa ,że wartość oczekiwana (estymowana) wielkości 
zmierzonej mieści się w przedziale ± σ z prawdopodobieństwem 68%. Dla 
przedziału  ±2σ prawdopodobieństwo wynosi 95% , a dla ±3σ wynosi 99,7%. 
Odchylenie standardowe σ jest miarą niepewności pojedynczego pomiaru z serii 
pomiarów.

Odchylenie standardowe średniej arytmetycznej  σ

av

=  σ /√n

Zwiększając liczbę pomiarów zmniejszamy zakres niepewności określenia średniej 
arytmetycznej 

. Jednak zwiększenie liczby pomiarów stukrotnie powoduje 

zmniejszenie σ

av

dziesięciokrotnie. W przypadku niewielkiej liczby pomiarów 

korzystniejsze jest stosowanie rozkładu Studenta. Krzywa dla tego rozkładu jest 
bardziej spłaszczona i szersza w stosunku do rozkładu Gaussa. Dla n>30 obie 
krzywe są praktycznie takie same. 

x

background image

Do analizy błędów można stosować inne krzywe gęstości rozkładu, np. krzywą
rozkładu równomiernego (prostokątnego) lub trójkątnego. 

Procedura określania niepewności typu A jest zgodna z rachunkiem 
prawdopodobieństwa , natomiast określenie niepewności typu B jest bardziej 
skomplikowane. 

Należy oszacować błędy systematyczne oraz ich rozkład prawdopodobieństwa .

W przypadku mierników wskazówkowych niedokładność miernika określa klasa 
miernika podawana przez producenta. 

Dla mierników cyfrowych często producenci stosują regułę ±(%rdg +%FS) tzn. 
sumą niedokładności względnej odczytanej (reading) i niedokładności dla 
zakresu miernika.

Duże znaczenie ma wykorzystanie zakresu pomiarowego. 

Czasami stosuje się opis ±(ppm rdg + ppm FS) , dla bardzo dokładnych 
mierników.

Dla mierników analogowych klasa definiowana jest :

Klasa miernika= (∆X

max

/ X

max

100 (%)

∆Xmax – maksymalna dopuszczalna niedokładność bezwzględna 

background image

Np. 

Dla 4 cyfrowego miernika o zakresie 10V , wskazania wyniosły 0,400 V, 

Jego niedokładność podano ±(0,05rdg+0,01FS)% tzn. 

± (0,05*0,400 +0,01*10,000)/100 V= ±(0,020+0,1)/100 V= ± 1,2mV

Bezwzględna niepewność pomiaru 1,2 mV

Dla zakresu 1V niepewność wyniesie 0,3 mV

Dla miernika analogowego o zakresie 10V i klasie 1  ∆Xmax wyniesie 
1*10V/100=0,1 V (dla pomiaru napięcia 10V)

Natomiast pomiar napięcia 5V obarczony jest niepewnością względną dwukrotnie 
większą (2%) niż w przypadku pomiaru napięcia 10V.

Podane wartości niepewności dotyczą warunków znamionowych pracy 
mierników. 

Niepewność pomiaru może wynikać z wielu przyczyn np..

Niedokładności wzorców, nieliniowości przetwarzania (histerezy, błędów 
czułości, błędów zera).

background image

Niepewność pomiaru związana z estymatami wielkości wejściowych jest 
obliczana metodą typu A lub typu B. 

Metoda typu A obliczania niepewności standardowej jest metodą, w której 
niepewność jest obliczana za pomocą analizy statystycznej serii obserwacji. 
Niepewność standardowa jest w tym przypadku odchyleniem standardowym 
eksperymentalnym średniej otrzymanej metodą uśredniania lub
odpowiednią analizą regresji. 

Metoda typu B obliczania niepewności standardowej jest metodą, w której 
niepewność jest obliczana innym sposobem niż analiza statystyczna serii 
obserwacji.

Metodę typu A obliczania niepewności standardowej stosuje się wtedy, gdy 

istnieje możliwość przeprowadzenia w identycznych warunkach pomiarowych 
wielu niezależnych obserwacji jednej z wielkości wejściowych. 
Jeżeli rozdzielczość procesu pomiarowego jest wystarczająca, otrzymane wyniki 
charakteryzuje zauważalny rozrzut.

background image

Na podstawie serii pomiarów określamy wartość średnią oraz odchylenie 
standardowe . 

Niepewność pomiaru określamy dla przyjętego poziomu ufności.

Dla prawdopodobieństwa 99,7%  (3σ ) współczynnik rozszerzenia k=3

Odpowiednio  dla prawdopodobieństwa 95%  (2σ ) współczynnik rozszerzenia 
wynosi k=2

Wynik pomiaru zawiera się w granicach 

)

(x

u

x

x

±

=

av

k

x

u

σ

=

)

(

W przypadku niepewności typu B należy uwzględnić błędy systematyczne 
oraz przypadkowe. Dla miernika cyfrowego napięcia można przyjmować
prostokątny (równomierny) rozkład gęstości prawdopodobieństwa , niektóre 
mierniki cyfrowe np. częstościomierze mają rozkład prawdopodobieństwa 
zbliżony do trójkątnego . 

Niepewność wyniku pomiaru dla rozkładu prostokątnego wynosi u(x)/ √3 
dla rozkładu trójkątnego u(x)/ √6

background image

Całkowitą niepewność dla niepewności obliczonych metodą i metoda 
można wyznaczyć

)

(

)

(

)

(

2

2

x

u

x

u

x

u

B

A

+

=

Obliczanie niepewności komplikuje się, jeżeli pomiar nie jest bezpośredni , 
ale wielkość estymowana jest zależnością funkcyjną (pomiar pośredni)

y=f(x1, x2, x3 , …, xn)

Należy wówczas korzystać z prawa propagacji błędów.

Należy zwrócić uwagę na poprawny zapis wyników pomiarów

Np. jeżeli zmierzono napięcie 5,345 V z niepewnością 0,1%  (tzn. 
5,345±0,005) nie można zapisywać np.. 5,34523 V (zbyt duża liczba cyfr 
znaczących ).

Niepoprawne jest też zaokrąglanie wyniku do postaci np.. 5,34 V

Ostatnia cyfra znacząca w wyniku pomiaru powinna być tego samego 
rzędu co błąd .

background image

Główne metody pomiarowe
W zależności od sposobu porównania mierzonej wielkości z wzorcem 
rozróżnia się metody pomiarowe:  bezpośrednią i pośrednią. 
Na rysunku jest pokazany pomiar prądu metodą bezpośredniego porównania z 
wzorcem. 
W układzie przedstawionym na rysunku  wykorzystuje się ideę ważenia 
(zresztą niekiedy układ ten jest nazywany wagą prądową).  Przez cewkę
elektromagnesu przepływa mierzony prąd I

powodując przyciąganie 

ferromagnetycznej masy umieszczonej na ramieniu równoważni. Można też
wykorzystywać inne mechanizmy przyciągania, na przykład przyciąganie przez 
elektromagnes magnesu lub przyciąganie drugiego elektromagnesu  - ten 
ostatni mechanizm najbliższy jest definicji ampera, jeśli elektromagnesy są
cewkami powietrznymi.

Pomiar natężenia 
prądu przez 
bezpośrednie 
porównanie z prądem 
wzorcowym:

a) układ otwarty,

b) układ z ujemnym 

sprzężeniem 
zwrotnym 

background image

Zmieniając wartość prądu wzorcowego, można doprowadzić wagę do równowagi 
- stan równowagi jest wykrywany jako położenie wskazówki w pozycji zero.

Stan równowagi można ocenić też metodami elektrycznymi, na przykład mierząc 
rezystancję Rx zależną od położenia suwaka potencjometru (rys).

Ważenie może być przy tym zrealizowane automatycznie - rezystor Rx

umieszcza się w jednym z ramion układu mostkowego.

Jeśli wszystkie rezystancje tego układu są jednakowe, napięcie na jego wyjściu 

jest równe zeru (mostek jest w stanie równowagi).

Zmiana rezystancji Rx wywołana wyprowadzeniem równoważni ze stanu 
równowagi spowoduje pojawienie się na wyjściu układu mostkowego sygnału 
napięciowego. 

Ten sygnał po wzmocnieniu powoduje pojawienie się prądu równoważącego 
wagę (rys). 
W ten sposób jest realizowane ujemne sprzężenie zwrotne - metoda radykalnie 
poprawiająca dokładność pomiaru.

background image

Pomiar natężenia prądu w układzie jak na rysunku  może być realizowany

metodą zerową — przez doprowadzenie układu do stanu równowagi (wskazówka 

w pozycji zero),

metodą różnicową - miarą badanego natężenia prądu jest wtedy odchylenie 

wskazówki albo sygnał elektryczny- nierównowagi, lub 

metodą zerowo--różnicową - układ jest wstępnie równoważony, a pomiarowi 
podlega odchyłka od stanu równowagi. Umożliwia to zwiększenie czułości metody 
przez zmniejszenie zakresu pomiarowego i poprawienie rozdzielczości 
(rozróżnialnego progu mierzonej wielkości). 

.

Pomiar natężenia prądu realizowany metodą
pośredniego porównania z wzorcem. 

Siła przyciągania elektromagnesu, przez który 
przepływa prąd mierzony 

x

jest równoważona 

siłą ciążenia odważnika G. 

Producent miernika może  wyskalować
przyrząd, określając wartości odchylenia 
wskazówki (lub wartości sygnału 
nierównowagi) przez przepuszczenie przez 
cewkę wartości wzorcowych prądu (często w 
tym celu używa się przyrządu wzorcowego 
zwanego kalibratorem).

background image

Pośredni pomiar może być także realizowany bez uprzedniego skalowania 

przyrządu prądem o wartości wzorcowej. Można bowiem określić zależność
między siłą a wartością prądu Ix w postaci F = K IxPomiarowi podlega więc 
tym razem nie wartość prądu, lecz wartość siły Fa badany prąd Ix jest 
określany dzięki znajomości stałej K.

Pomiar napięcia metodą kompensacyjną: a) zasada metody kompensacji, 

b) układ kompensacyjny z ujemnym sprzężeniem zwrotnym

Mierzoną wielkość można porównywać z wzorcem metodą kompensacyjną. 
M
etoda kompensacyjna jest jedną z najdokładniejszych.
Dodatkową ważną zaletą kompensacji napięcia jest brak poboru prądu z 
mierzonego źródła napięcia, co oznacza, że rezystancja wejściowa 
woltomierza kompensacyjnego jest bliska nieskończoności. 

background image

Oprócz metody kompensacyjnej (odejmowanie dwóch sygnałów) stosuje się też
metodę komparacyjną, w której porównuje się dwa sygnały, a dokładniej określa 
się stosunek dwóch sygnałów.

Przykład komparatora dwóch rezystancji jest przedstawiony na rysunku. 

Stan równowagi zachodzi podczas kompensacji prądów:

mierzonego Ix oraz wzorcowego /w,

Stan równowagi (brak sygnału we wskaźniku zera) osiąga się, zmieniając 
wartości napięć U\ lub U2, lub rezystencję Rw

Warunek równowagi można wówczas przedstawić w postaci

Komparator prądu stałego (direct current comparator, DCC) jest obecnie 
stosowany przez NIST (National Institute of Standard and Technology, USA) 
jako bardzo dokładna metoda odtwarzania wzorca rezystancji .

background image

Oprócz metody kompensacyjnej (odejmowanie dwóch sygnałów) stosuje się też
metodę komparacyjną, w której porównuje się dwa sygnały, a dokładniej określa 
się stosunek dwóch sygnałów.

Przykład komparatora dwóch rezystancji jest przedstawiony na rysunku. 

Stan równowagi zachodzi podczas kompensacji prądów:

mierzonego Ix oraz wzorcowego /w,

Stan równowagi (brak sygnału we wskaźniku zera) osiąga się, zmieniając 
wartości napięć U\ lub U2, lub rezystencję Rw

Warunek równowagi można wówczas przedstawić w postaci

Komparator prądu stałego (direct current comparator, DCC) jest obecnie 
stosowany przez NIST (National Institute of Standard and Technology, USA) 
jako bardzo dokładna metoda odtwarzania wzorca rezystancji .