background image

 i 

  

APPLICATION OF MEMBRANE BIOREACTOR SYSTEMS FOR  

LANDFILL LEACHATE TREATMENT 

 
 
 

by 

 
 
 

Boonchai Wichitsathian 

 
 
 

A dissertation submitted in partial fulfillment of the requirements for the  

degree of Doctor of Technical Science 

 
 
 

Examination Committee:     Prof. C. Visvanathan (Chairman) 

  Dr. Preeda Parkpian 
  Dr. Josef Trankler 
  Prof. Athapol Noomhorm 
 
 

External Examiner:     Prof. F.W. Günthert 

  Institut für Wasserwesen 
  Fakultät für Bauingenieur- und Vermessungswesen 
  Universität der Bundeswehr München 
  Neubiberg, Germany 
 
 
 

Nationality:   Thai 

Previous Degrees:   Bachelor of Industrial Chemistry 

  King Mongkut’s Institute of Technology Thonburi 
  Bangkok, Thailand 
  Master of Environmental Technology 
  King Mongkut’s Institute of Technology Thonburi 
  Bangkok, Thailand 
 

Scholarship Donor:   Royal Thai Government 

 
 
 
 

Asian Institute of Technology 

School of Environment, Resources and Development 

Thailand 

August 2004 

 

background image

 ii 

  

Acknowledgements 

 

I would like to deeply express my profound gratitude to his advisor, Prof. C. 

Visvanathan for kindly giving his stimulating ideas, valuable guidance, numerous 
constructive suggestions and encouragement through his study at AIT. The author also 
would like to thank Dr. Preeda Parkpian, Dr. Josef Trankler, Dr. David A. Luketina, Dr. 
Lee Seung-Hwan, and Prof. Athapol Noomhorm for their valuable comments, critical ideas 
and serving as members of examination committee. 
 

I am greatly indebted to Prof. F.W. Gunthert for kindly accepting to serve as 

External Examiner. His valuable advice, guidance and professional comments are highly 
appreciated.  

 
I gratefully acknowledge to Royal Thai Government for the financial support. 
 
I am very grateful to Ms. Sindhuja Sankaran and Ms. Loshnee Nair for providing 

comments and helping throughout my study at AIT. 

 
I sincerely would like to thank all staffs and my lab colleagues in the 

Environmental Engineering Program for friendship, help, and moral support, which 
contributed in various ways to the completion of this dissertation.  
 

Sincere gratitude is expressed to the Pathumthani municipality and Ram-indra 

transfer station office, Thailand, for the useful information and assistance on the leachate 
and sample collection.  
 
 

Finally, I would like to express my deepest gratitude and dedicate this research 

work to my parents, all family members and special friends, whose love, assisted me 
through difficult times and contributed to the success of this study. 
  
 

background image

 iii 

  

Abstract 

 

 

Landfill leachate is a complex wastewater with considerable variation in both quality 

and quantity. The composition and concentration of pollutants are influenced by the types 
of waste deposited, hydrogeological factors, and more significantly by the age of the 
landfill site. In general, leachate is highly contaminated with organic contaminants 
measured as chemical oxygen demand (COD) and biochemical oxygen demand (BOD), 
and also with high ammonium nitrogen concentration. Biological processes have been 
found ineffective for leachate from relatively old landfill. In leachate containing high 
concentrations of organic and nitrogen compounds such cases result in possible serious 
environmental problems near the landfill site. 
 
 

This research was undertaken to investigate the performance of a membrane 

bioreactor (MBR) using mixed yeast culture (YMBR) and mixed bacteria culture (BMBR) 
in treating raw leachate containing high organic and nitrogen concentrations. The 
inhibition effects of ammonium nitrogen and lead on yeast and bacteria cultures were 
determined by measuring the oxygen uptake rate (OUR) using the respirometric method. 
Furthermore, for both YMBR and BMBR, treating the stripped leachate, they were 
assessed the treatment efficiency to compare the results with those treating the raw 
leachate. 
 
 

The inhibition experiment revealed that a bacteria culture was very sensitive to 

ammonium nitrogen when it was compared to a yeast culture. Also the values of biokinetic 
coefficients showed that the specific growth rate (µ) in bacteria system was influenced. At 
ammonium concentration of 2,000 mg/L, the response of OUR inhibition in a bacteria 
system was approximately 37% whereas it was around 6% in a yeast system. Furthermore, 
both yeast and bacteria cultures were also sensitive to lead. 
 
 

In a MBR, treating raw leachate, the COD removal rate for BMBR was slightly 

lower than the YMBR for varied hydraulic retention time (HRT) at high volumetric 
loading rate. The average COD removal efficiency in BMBR was 62±2% while in YMBR 
was 65±2%. The YMBR could obtain higher COD removal rate at higher volumetric 
loading rate than the BMBR. This indicated that the yeast system can treat leachate 
containing high organic and nitrogen concentrations.  The average TKN removal efficiency 
for both BMBR and YMBR systems was from 14-25% and 19-29%, respectively. The 
nitrite and nitrate concentrations (NO

2

-

 and NO

3

-

) were found to be very low.  

 
 

The comparative evaluation of treatment performance of MBR, treating stripped 

leachate, was examined. The COD removal of both BMBR and YMBR was above 70% at 
HRT 16 h and 24 h. As a result, the pretreatment with ammonia stripping prior to BMBR 
showed more significant improvement in terms of COD removal when it was compared to 
YMBR. This could be confirmed that the trend of inhibition effect on bacteria was 
dependent upon the ammonium nitrogen concentration. The range of BOD concentration 
of effluents from both YMBR and BMBR, treating the stripped leachate was from 30-55 
mg/L. This level followed the present effluent standard. Although BOD could be reduced 
to lower values with these methods, the treated leachate still contained a large quantity of 
refractory organic compounds. This might be due to the contribution of the slowly 
biodegradable organics and non-biodegradable organics contained in the leachate. 
Therefore, they should be further treated in a post treatment for elevating the final effluent 
to meet the present effluent standard or even increasing the biodegradable organics. 

background image

 iv 

  

 
 

Under the same operating conditions, the YMBR could run under transmembrane 

pressure (TMP) 1.3-2.5 times lower than the BMBR with the significantly reduced 
membrane fouling rate. This might be due to the soluble extracellular polymeric substances 
(soluble EPS). Hence, yeast system could enhance membrane performance and had the 
potential to improve the treatment system due to reduction of operational problems. In 
addition, bacteria sludge showed a better dewatering quality compared to that of the yeast 
sludge.     
 

background image

 v 

  

Table of Contents 

 
Chapter Title 

Page 

 

 

 

Title Page 

     i 

 

Acknowledgements 

    ii 

 

Abstract 

   iii 

 

Table of Contents 

    v 

 

List of Tables 

 viii 

 

List of Figures 

    x 

 

List of Abbreviations 

  xii 

 
 

Introduction 

    1 

 

 

1.1 Background 

    1 

 

 

1.2 Objectives of the Study 

    3 

 

 

1.3 Scope of the Study 

    4 

 

Literature Review 

    5 

 

 

2.1 Introduction 

    5 

 

 

2.2 Solid Waste Management Practices 

    6 

 

 

2.3 Municipal Solid Waste Landfill 

    7 

 

 

2.4 Municipal Solid Waste Landfill Leachate 

    7 

 

 

2.5 Leachate Composition and Characteristics 

    8

 

 

2.6 Molecular Weight Distribution in Landfill Leachate 

  11

 

 

2.7 Factors Affecting Leachate Composition 

  12 

 

 

 

2.7.1 Seasonal Variation 

  13 

 

 

 

2.7.2 Landfill Age 

  14 

 

 

 

2.7.3 Composition of the Waste Dumped 

  16

 

 

 

2.7.4 Geological Characteristic 

  16 

 

 

 

2.7.5 Filling Technique 

  16

 

 

2.8 Leachate Treatment 

  17 

 

 

 

2.8.1 Biological Treatment Processes 

  18 

 

 

 

2.8.2 Physical Treatment 

  24 

 

 

 

2.8.3 Chemical Treatment  

  30 

 

 

 

2.8.4 Natural Leachate Treatment Systems 

  33 

 

 

 

2.8.5 Co-Treatment with Municipal Wastewater  

  35 

 

 

2.9  Combined Treatment Facility 

  36 

 

 

 

2.9.1 Biological Treatment and Reverse Osmosis 

  36 

 

 

 

2.9.2 Microfiltration and Reverse Osmosis 

  37 

   

2.9.3 

Denitrification-Nitrification/Ultrafiltration and Reverse Osmosis    38 

 

 

 

2.9.4 MBR-UV and Ozone-Reverse Osmosis  

  

39 

  2.10

 

Microbial Toxicity  

  39 

 

 

2.11 Membrane Bioreactors  

  41 

 

 

 

  2.11.1 Membrane Configuration 

  42 

 

 

 

  2.11.2 Application of Membrane Bioreactors 

  44 

 

 

 

  2.11.3 Sludge Characteristics 

  45 

 

 

2.12 Yeasts 

  49 

 

 

 

  2.12.1 Introduction 

  49 

 

 

 

  2.12.2 Applications of Yeasts for Wastewater Treatment 

  49 

background image

 vi 

  

 
 

 

2.13 Rationale for the Study and Proposed Treatment Sequence 

  52 

 

 

 

  2.13.1 Leachate Characteristic 

  52 

 

 

 

  2.13.2 Need for Ammonia Stripping 

  52 

 

 

 

  2.13.3 Need for Membrane Bioreactors 

  53 

 

Methodology 

  54 

 

 

3.1 Introduction 

  54

 

 

3.2  Leachate Characterization 

  54

 

 

3.3  Seed Study 

  55

 

 

 

3.3.1 Yeast and Bacterial Sludge 

  55

 

 

 

3.3.2 Acclimatization 

  56

 

 

3.4  Toxicity Studies 

  56

 

 

 

3.4.1 Ammonia Toxicity 

  57

 

 

 

3.4.2 Lead Toxicity 

  58

 

 

3.5 Ammonia Stripping 

  58

 

 

3.6 Membrane Bioreactor 

  59

 

 

 

3.6.1 Membrane Resistance Measurement 

  59

 

 

 

3.6.2 Experimental Set-up 

  60

 

 

 

3.6.3 Parametric Studies 

  62

 

 

 

3.6.4 Molecular Weight Distribution 

  62

 

 

 

3.6.5 Sludge Characterization 

  64

 

 

3.7 Ammonia Stripping Coupled Membrane Bioreactor 

  64

 

 

3.8 Analytical Methods 

  65 

  

Results and Discussion 

  67 

 

4.1 Simulation of Leachate Characteristic for Treatment of  

 

      Middle Aged Leachate 

  67 

 

4.2 Biokinetic Studies 

  68 

 

 

4.2.1 Acclimatization of Mixed Yeast and Bacterial Sludge 

  68 

 

 

4.2.2 Kinetics of Yeast and Bacterial Growth 

  72 

 

 

4.2.3 Toxicity Studies 

  75 

 

4.3 Application of Yeast and Bacteria Based Membrane Bioreactors  

 

 

in Leachate Treatment 

  80 

 

 

4.3.1 Initial Membrane Resistance 

  81 

 

 

4.3.2 Optimization of HRT in Terms of Membrane Bioreactor   

 

 

         Treatment Efficiency 

  82 

 

 

4.3.3 Membrane Fouling and Membrane Resistance 

  89 

 

4.4 Application of Yeast and Bacteria Based Membrane Bioreactors  

 

 

in Ammonia Stripped Leachate Treatment 

  91 

 

 

4.4.1 Ammonia Stripping Studies 

  91 

 

 

4.4.2 Membrane Resistance and Membrane Cleaning 

  95 

 

 

4.4.3 Performance of Ammonia Stripping Coupled Membrane  

 

 

         Bioreactor Process 

  97 

 

4.5 Other Studies 

106 

 

 

4.5.1 Biodegradability of the Leachate 

106 

 

 

4.5.2 Molecular Weight Cut-off 

110 

 

 

4.5.3 Sludge Properties  

115 

 

 

4.5.4 EPS Formation 

116 

 

 

4.5.5 Conductivity and TDS 

117 

background image

 vii 

  

 

 

4.5.6 Cost Analysis for Operation 

117 

Conclusions and Recommendations 

119 

  5.1 

Conclusions 

119 

 

 

5.2 Recommendations for Future Work 

121 

 
 References 

123 

 

Appendix A: Pictures of Experiments 

141 

 

Appendix B: Leachate Characteristics and Experimental  

 

 

                      Data of Acclimation 

145 

 

Appendix C: Experimental Data of Biokinetic Study and  

 

                      Toxicity Study 

149 

 

Appendix D: Membrane Resistance Studies 

155 

 

Appendix E: MBR without Ammonia Stripping 

163 

 

Appendix F: Ammonia Stripping Studies 

171 

 

Appendix G: MBR with Ammonia Stripping 

174 

 

Appendix H: Other Studies 

179 

 

background image

 

 

 viii 

List of Tables 

 
Tables Title 

Page 

   

2.1  

Leachate Characteristic in Acidogenic and Methanogenic Phase  

 

in a Landfill 

    8 

2.2 

Comparison of Leachate Characteristics of Landfills Surveyed in  

 

Asia, Europe and America 

  10 

2.3 

Relation between Landfill Age, Leachate Characteristics and Treatments    11 

2.4 

Classification of Types of Substances Using Molecular Weight Cutoff  

  12 

2.5 

Variation of COD, BOD & BOD/COD with Increasing Landfill Ages  

  15 

2.6 

Nitrogen Concentrations from Various Sources 

  15 

2.7 

Nitrogen Concentration Ranges in the Leachate for Landfill Stabilization    15 

2.8 

Summary of Biokinetic Coefficient of Activated Sludge Process for  

 

Landfill Leachate Treatment 

  19 

2.9 

Operational and Environmental Conditions for Nitrification- 

 

Denitrification Processes 

  23 

2.10 

Treatment Efficiencies of Different Aerobic Biological Treatment  
Systems 

  25 

2.11 

Treatment Efficiencies of Different Anaerobic Biological Treatment  

 

Systems  

  26 

2.12 

Membrane Processes  

  28 

2.13 

Removal Efficiency of Moderate to High Concentrations of Pollutants  

 

Using Nanofiltration, Ultrafiltration and Reverse Osmosis  

  28 

2.14 

Typical Reverse Osmosis Plant Performance for Leachate Purification, 

Germany 

  30 

2.15 

Treatment Efficiencies of Different Physico-chemical Treatment Systems    34 

2.16 

Typical Leachate Composition at Each Stage of Leachate Treatment Plant    39 

2.17 

 Inhibitory Effect of Various Toxicants 

  41 

2.18 

Advantages and Disadvantages of Membrane Bioreactors 

  43 

2.19 

Operating Conditions of Membrane Bioreactor Process for Treatment  

 of 

Different 

Kinds 

of Wastewater 

  46

 

2.20 

Operating Conditions of Yeast System Compared with Activated  

 

Sludge Process  

  51 

2.21 

Performance of Yeast Based Treatment System in Dried Food Products  

 

and Marine Product Industry 

  51 

3.1  

Composition of Simulated Leachate 

  55 

3.2  

Operating Conditions for Yeast and Bacteria Acclimatization 

  56 

3.3  

Operating Conditions for Yeast and Bacteria Mixtures in Respirometer 

  57 

3.4  

Description of the Chemical Cleaning 

  60 

3.5  

Technical Parameters of the Experimental Plant 

  60 

3.6  

Experimental Operating Conditions of YMBR and BMBR Systems 

  62 

3.7  

Characteristics of Ultrafiltration Membrane 

  64 

3.8  

Parameters and Their Analytical Methods 

  66 

4.1  

Compositions of Leachate Simulated from Leachates Obtained from  

 

Pathum-thani Landfill Site (PS) and Ram-Indra Transfer Station (RIS) 

  67 

4.2  

Biokinetic Coefficients of Yeast and Bacteria Sludge for the Leachates 

  74 

4.3  

Effect of Free Ammonia Concentration on Yield Coefficient and the   

 

Specific Growth Rate of the Bacterial Sludge 

  76 

 

background image

 

 

 ix 

4.4  

Effect of Free Ammonia Concentration on Yield Coefficient and the  

 

Specific Growth Rate of the Yeast Sludge 

  77 

4.5  

Substrate Utilization by the Yeast and Bacterial Sludge 

  79 

4.6  

COD Removal Efficiency in YMBR System at Different HRT 

  85 

4.7  

COD Removal Efficiency in BMBR System at Different HRT 

  86 

4.8  

TKN Removal Efficiency in YMBR System  

  88 

4.9  

TKN Removal Efficiency in BMBR System  

  88 

4.10  

Membrane Cleaning Frequency in the MBR Systems 

  90 

4.11  

Membrane Resistance in the MBR Systems 

  90 

4.12  

Variation in Ammonia Removal Efficiency 

  94 

4.13  

Determination of Membrane Resistance of Membrane Module after  

 

Clogging in BMBR system (A = 0.42 m2; Pore Size = 0.1 µm) 

  96 

4.14  

Contribution of BOD at 5, 10 and 15 Days to the Total 20 Days BOD 

108 

4.15  

Sludge Properties in the YMBR and BMBR Systems 

115 

4.16  

MLSS and MLVSS Concentrations in Yeast and Bacteria Reactors 

116 

4.17  

Bound EPS Concentration in the YMBR and BMBR Systems 

116 

4.18  

Soluble EPS Concentration in the YMBR and BMBR Systems 

116 

4.19  

Conductivity and TDS Concentrations in Leachate and Effluents 

117 

4.20  

Cost of Chemical Used for pH Adjustment 

118 

4.21  

Total Chemical Cost Requirement for Each Treatment System 

118 

 

 

background image

 

 

 x 

List of Figures 

 

Figures Title 

Page 

 

2.1  

Schematic Representation of a Typical Engineered Landfill 

    6 

2.2  

Changes in Significant Parameters during Different Phases of  

 

Landfill Stabilization  

    7 

2.3  

Variation in Significant Pollutant Ratios with Increase in Age  

 

of the Landfill 

    9 

2.4  

Water Movements in the Landfill 

  13 

2.5  

Leachate Productions and Rainfall Variation with Time  

  14 

2.6  

Treatment of Landfill Leacahte with Two Stage Reverse Osmosis  

  29 

2.7  

Schematic Diagram of Biological Treatment and Reverse Osmosis  

 

for Leachate Treatment  

  37 

2.8 

Schematic Diagram of Microfiltration/Reverse Osmosis for  

 

Leachate Treatment 

  38 

2.9 

Schematic Diagram of Denitrification-Nitrification/UF and  

 

Reverse Osmosis for Leachate Treatment 

  38 

2.10  

Schematic Diagrams of (a) External Recirculation MBR and  

 

(b) Submerged MBR System 

  42 

3.1  

Flowchart Showing Different Stages of Experimental Study 

  54 

3.2  

Diagram Illustrating the Enrichment Procedure 

  55 

3.3  

Respirometer 

  57 

3.4  

Experiments Conducted to Optimize Ammonia Stripping 

  59 

3.5  

Schematic Diagrams of Membrane Bioreactor with and without  

 

Ammonia Stripping 

  61 

3.6  

Methodology for Performing Molecular Weight Cut-off Distribution 

  63 

3.7           Flowchart Showing Ammonia Stripping Coupled MBR Process 

  65 

4.1  

Variation in F/M and COD Removal Efficiency in Yeast Sludge 

  69 

4.2  

Variation in F/M and COD Removal Efficiency in Bacterial Sludge 

  69 

4.3  

Increase in Biomass during Acclimatization of the Bacterial Sludge 

  70 

4.4  

Increase in Biomass during Acclimatization of the Yeast Sludge 

  71 

4.5  

Predominantly Spherical and Egg-shaped Yeasts with Budding in   

 

the Yeast Reactor (x1500) 

  71 

4.6  

Bacteria Cells in the Mixed Bacteria Sludge: a) Gram Negative and  

 

b) Gram Positive (x1500) 

  72 

4.7  

Specific Growth Rate of Mixed Bacteria Sludge with Increasing  

 

Substrate Concentration 

  72 

4.8 

Specific Growth Rate of Mixed Yeast Sludge with Increasing   

 

Substrate Concentration 

  72 

4.9 

Inhibition of the Yeast and Bacterial Culture with Increasing   

 

Ammonium Chloride Concentration 

  77 

4.10  

Inhibitory Effect of Lead in Bacterial Sludge 

  79 

4.11  

Inhibition Effect of Lead in Yeast Sludge 

  80 

4.12  

Variation in Transmembrane Pressure with Permeate Flux (a) YMBR  

 

and (b) BMBR 

  81 

4.13  

Variation in Organic Load with HRT 

  83 

4.14  

Variation in MLSS in the MBR Systems 

  83 

4.15  

Variation in pH in the MBR Systems 

  84 

 

background image

 

 

 xi 

4.16  

COD Concentration in the Influent and Effluent in the BMBR and  

 

YMBR at Different HRT 

  84 

4.17  

COD Removal Efficiency in the BMBR and YMBR at Different HRT 

  85 

4.18  

Variations in COD Removal Rate as a Function of F/M Ratio 

  86 

4.19  

TKN Removal Efficiency in the YMBR and BMBR with HRT 

  87 

4.20  

Cleaning of membranes in the YMBR and BMBR system in   

 

relation to TMP 

  90 

4.21  

Variation in the Ammonia Removal Efficiency with pH 

  93 

4.22  

Ammonia Removal Efficiency with Varying Velocity Gradient and pH 

  93 

4.23  

Trans-membrane Pressure Variation in MBR Process for Ammonia   

 

Stripped Leachate Treatment 

  96 

4.24  

Variation in COD at 16 and 24 h HRT   

  98 

4.25  

Variation in MLSS at 16 and 24 h HRT 

  98 

4.26  

COD Removal with and without Ammonia Stripping at 16 and 24 h HRT    99 

4.27  

Expected and Actual Improvement in COD Removal with Ammonia   

 

Stripping in the YMBR and BMBR Systems 

100 

4.28  

BOD in the BMBR and YMBR Effluent at 16 h HRT 

101 

4.29  

BOD in the BMBR and YMBR Effluent at 24 h HRT 

101 

4.30  

BOD Removal Efficiency in the BMBR and YMBR Systems 

102 

4.31  

BOD/COD of the BMBR and YMBR Effluent 

102 

4.32  

Influent and Effluent Nitrogen Content in BMBR at (a) 16 h HRT and  

 

(b) 24 h HRT 

103 

4.33  

Influent and Effluent Nitrogen Content in YMBR at (a) 16 h HRT and  

 

(b) 24 h HRT 

104 

4.34  

Overall TKN Removal in BMBR and YMBR with and without  

 Ammonia 

Stripping 

105 

4.35  

TKN Removal in MBR Process at 16 and 24 h HRT 

106 

4.36  

Change of OUR at Different Time Period for Leachate Sample 

107 

4.37  

20 Days BOD of the Raw Leachate and Stripped Leachate 

109 

4.38  

20 Days BOD of the YMBR and BMBR Effluents 

109 

4.39  

Molecular Weight Cut-off of Raw Leachate, Stripped Leachate,  

 

Bacterial and Yeast Effluents 

111 

4.40 

Percent Contribution of Various Molecular Weight Compounds to  

 

the Total COD 

111 

4.41  

Molecular Weight Cut-off of Leachate (a) COD (mg/L) (b) COD (%) 

113 

4.42  

Molecular Weight Cut-off of Leachate (a) BOD (mg/L) (b) BOD (%) 

114 

 

background image

 

 

 xii 

List of Abbreviations 

 
AAS   

Atomic Absorption Spectrophotometer 

AnSBR 

Anaerobic Sequencing Batch Reactors 

AOX  

Adsorbable 

Organic 

Halogens 

AS  

Activated 

Sludge 

BACFB Biological 

Activated 

Carbon Fluidized Bed Process 

BOD   

Biochemical Oxygen Demand 

BMBR  

Bacterial Membrane Bioreactors 

C   Carbon 
cm  

Centimeter 

COD   

Chemical Oxygen Demand 

CST   

Capillary Suction Time 

d  

 

Day 

Da  

Daltons 

DO  

Dissolved 

Oxygen 

DOC   

Dissolved Organic Carbon 

DSVI    

Diluted Sludge Volume Index 

EMBR  

Extractive Membrane Bioreactor  

EPS   

Extracellular Polymeric Substances 

F/M  

Food/Microorganism 

ratio 

FS  

Fixed 

Solids 

g  

 

Gram 

 

Mean velocity gradient 

GAC   

Granular Activated Carbon 

h   Hour 
HRT   

Hydraulic Retention Time 

J   Permeate 

flux 

 

Substrate removal rate 

kDa  

Kilo 

Daltons 

kg   Kilogram 
kPa  

Kilo 

Pascal 

kWh  

Kilowatt-hour 

k

d

 

 

Endogenous decay coefficient 

k

e

 

 

Mean reaction rate coefficient 

K

s

   Half-velocity 

constant 

L   Liter 
m   Meter 
m

2

  

Square 

meter 

m

3

  

Cubic 

meter 

m

3

/d   

Cubic meter per day 

mg/L   

Milligram per liter 

min  

Minute 

MAACFB Microorganism 

Attached 

Activated Carbon Fluidized Bed Process 

MABR  

Membrane Aeration Bioreactors 

MBR  

Membrane Bioreactor 

MF  

Microfiltration 

 

MLSS   

Mixed Liquor Suspended Solids 

MLVSS 

Mixed Liquor Volatile Suspended Solids 

MW  

Molecular 

Weight 

background image

 

 

 xiii 

MWCO Molecular 

Weight 

Cut-off 

 

MWW  

Municipal Wastewater 

N   Nitrogen 
NF  

Nanofiltration 

NH

3

-N  

Ammonia Nitrogen 

NH

4

-N  

Ammonium Nitrogen 

NO

2

-N  

Nitrite Nitrogen 

NO

3

-N  

Nitrate Nitrogen 

NOM   

Natural Organic Matter 

OLR   

Organic Loading Rate 

OUR   

Oxygen Uptake Rate 

P   Phosphorus 
Pa   Pascal 
PAC   

Powder Activated Carbon 

PS 

 

Pathumthani Landfill Site 

R   Filtration 

resistance 

R

c

 

 

Resistance due to cake layer 

R

m

  

Intrinsic 

resistance 

R

n

 

 

Resistance due to irreversible fouling 

R

t

   Total 

resistance 

RBC   

Rotating Biological Contactor 

RIS  

Ram-indra 

Transfer 

Station 

RO  

Reverse 

Osmosis 

rpm 

 

Rotations per minute   

 

s   Seconds 
S

o

/X

o

  

Substrate/Biomass ratio 

S

s

   Readily 

biodegradable 

organics 

SBR  

Sequencing 

Batch 

Reactor 

SCBP   

Suspended Carrier Biofilm Process 

SD  

Standard 

Deviation 

SRT   

Sludge Retention Time 

SS  

Suspended 

Solids 

SVI 

 

Sludge Volume Index 

T   Temperature 
TDS   

Total Dissolved Solid 

TOC   

Total Organic Carbon 

TKN   

Total Kjedahl Nitrogen 

TMP  

Transmembrane 

Pressure 

TS  

Total 

Solids 

TVS   

Total Volatile Solids 

 

Substrate Utilization Rate 

UASB  

Upflow Anaerobic Sludge Blanket  

UF  

Ultrafiltration 

USB/AF 

Upflow Hybrid Sludge Bed/Fixed Bed Anaerobic 

UV  

Ultraviolet 

VFA   

Volatile Fatty Acid 

VLR  

Volumetric 

Loading 

Rate 

VS  

Volatile 

Solids 

VSS   

Volatile Suspended Solids 

X

s

 

 

Slowly biodegradable organics 

background image

 

 

 xiv 

Y   Yield 

coefficient 

YMBR  

Yeast Membrane Bioreactor 

Ө

c

 

 

Solid retention time 

o

C   Degree 

Celsius 

∆P 

 

Transmembrane Ppessure  

µ   Vicosity 
µm  

Micrometer 

µ

max

   

Maximum specific growth rate 

µS/cm   

Microsiemens per centimeter 

 
 

background image

 1 

Chapter 1 

 

Introduction 

 
 
1.1 Background 
 

Rapid industrialization and urbanization has resulted in an immense environmental 

degradation. Population growth and poor environmental management practices have led to 
deterioration of environmental quality in most of the developing countries. The 
composition of the domestic refuse has radically changed in character over the last fifty 
years, due to the rise of an affluent society. In recent years, solid waste management has 
gained focus in many countries. Source reduction, reuse and recycling of waste, 
composting, incineration and landfill disposal are few of the solid waste management 
approaches practiced in different countries. The suitability of these approaches differs from 
place to place. Municipal solid waste disposal in the landfill is the most common, cheap 
and easiest municipal solid waste management practice followed throughout the world. 
However, landfill requires a close environmental engineering surveillance in its design and 
operation as it is likely to generate leachate which would potentially contaminate nearby 
groundwater and surface water.  With the changing nature of domestic refuse composition 
over the years, the proportion of refuse available for decomposition has greatly increased 
and thus the organic strength of the leachate has increased, resulting in its greater potential 
to pollute water. A need exist to focus on the environmental problems concerned with 
domestic landfill disposal to protect the environment and prevent adverse health affects.  

 
Surface water that percolates through the landfill and leaches out organic and 

inorganic constituents from the solid waste is termed leachate. Landfill leachate production 
starts at the early stages of the landfill and continues several decades even after landfill 
closure. Landfill leachate is mainly generated by the infiltrating water, which passes 
through the solid waste fill and facilitates transfer of contaminants from solid phase to 
liquid phase. Due to the inhomogeneous nature of the waste and because of the differing 
compaction densities that will be encountered, water will be able to percolate through and 
appear as leachate at the base of the site. If no remedial measures are taken to prevent 
continual inputs of water to the wastes, this could pose adverse environmental impacts.  

 
Landfill leachate is high strength wastewater which contains high concentrations of 

organic matter and ammonium nitrogen. There is a fluctuation in the composition of 
organic, inorganic and heavy metal components in the leachate making them more difficult 
to be dealt with. The composition depends on the landfill age, the quality and quantity of 
solid waste, the biological and chemical processes occurring in the landfill, and the amount 
of precipitation and percolation. When the leachate containing high strength organic matter 
and ammonia is discharged without treatment, it can stimulate algae growth through 
nutrient enrichment, deplete dissolved oxygen, and cause toxic effects in the surrounding 
water environment. Landfill design and operation have a major impact and influence on the 
leachate generation. This leachate varies from landfill to landfill and over time and space in 
a particular landfill with fluctuations apparent over short and long-term periods due to 
climatic, hydrogeology and waste composition variations (Keenan, et al., 1984). Generally, 
leachate contaminants are measured in terms of chemical oxygen demand (COD) and 
biological oxygen demand (BOD), halogenated hydrocarbons and heavy metals. In 
addition, leachate usually contains high concentrations of inorganic salts - mainly sodium 

background image

 2 

chloride, carbonate and sulfate and is dependent on the waste composition land-filled. An 
average fresh domestic refuse leachate can have a BOD of around 15,000 mg/L. When 
compared to an average raw sewage BOD of 200 mg/L, it can be seen that landfill leachate 
is around 75 times as strong in terms of its polluting potential.  

 
Sufficient means have to be evolved to deal with landfill leachate so that its impact 

can be minimized. Leachate treatment and prevention or minimization of leachate 
generation is primarily the two prime options available for landfill leachate management. 
Disposal of the leachate in the sewer is an attractive option, but the variation in the quality 
of the sewage and leachate and remoteness of the landfill sites make this option difficult 
practically. Leachate treatment has inevitably become a much more widespread 
requirement at landfills. It is a technology which has only developed in 1980 in the UK, 
but is now advancing rapidly as experience is being gained on full scale landfills 
(Robinson,  et al., 1992).The main environmental problem experienced at landfills has 
resulted from a loss of leachate from the site and the subsequent contamination of 
surrounding land and water. Improvements in landfill engineering has been aimed at 
reducing leachate production, collecting and treating leachate prior to discharge and 
thereby limiting leachate infiltration to the surrounding soil (Farquhar, 1989). However a 
need exists to develop reliable, sustainable options to effectively manage leachate 
generation and treatment. In designing a leachate treatment scheme, the process must 
reflect the possibility that treatment techniques which work well for a young leachate may 
become wholly inadequate as the landfill age increases. 

 
There are difficulties concerned with the treatment of the leachate. First, the 

variability and strength of the leachate have important waste treatment application. Second, 
the changes encountered from landfill to landfill are such that waste treatment technology 
applicable at one site may not be directly transferable to other location. Third, fluctuations 
in the leachate quality which occur over both short and long interval must be accounted for 
in the treatment design and long interval must be accounted for in the treatment design.  

 
Current treatment practices in developed countries advocate leachate minimization 

by operating landfills as dry as possible; this poses the problem of long-term landfill 
stabilization. The alternative of operating the landfill as wet as possible by leachate re-
circulation does address the problem of leachate treatment by reducing organics. However, 
this method does not prove effective in treating “hard COD” or refractory compounds and 
nitrogen. Therefore, it does not meet municipal discharge standards. Various biological 
treatment methods have been employed for the treatment of leachate from municipal solid 
waste landfill. Extended aeration systems, sequencing batch reactors and aerated lagoons 
can act as robust, stable and reliable means of treating leachate.  These treatment systems 
were found to be inefficient for leachate containing high strength organic substances and 
ammonia nitrogen.  In addition, the organic loading and pH are significant in influencing 
the growth of nitrifying bacteria in nitrification process (Aberling, et al., 1992; Bea, et al.
1997; Kabdasli, et al., 2000).  Due to high ammonia concentrations in the leachate, 
ammonia toxicity and sludge properties are affected in the biological treatment systems. 
reed bed treatment system can also be designed to treat effluent by passing it through the 
rhizomes of the reed. However, such treatment systems would not deal satisfactorily 
because reed bed are poor in removing ammonia. Additionally, ammonium concentration 
as high as approximately 1,000 mg/L of untreated leachate feed, might be directly toxic 
(Robinson, et al., 1992). The physical treatment systems used for treatment of the leachate 
include activated carbon adsorption, filtration, evaporation; etc. These processes are 

background image

 3 

generally unsuccessful in removal of organic material from the raw leachate. The chemical 
methods include coagulation and precipitation and oxidation of the organics. The 
disadvantage of the coagulation and precipitation is that large amounts of sludge are 
produced which is difficult to manage. Neither biological nor chemical/physical treatment 
separately achieves high removal efficiency. Physical-chemical treatment is needed to 
remove the metals and hydrolyze some of the organics whilst biological treatment is 
necessary for stabilization and degradation of organic matter. Looking into these aspects, 
landfill leachate treatment requires some advanced treatment technique, to meet the 
required effluent standards. 
 
 

Membrane bioreactor systems are an example of an emerging advanced leachate 

treatment technology. Application of the membrane coupled activated sludge process in 
leachate treatment is very promising because of the expected effluent quality. The design 
of the membrane bioreactor is becoming more affordable and the equipment more reliable. 
Membrane bioreactor systems are suspended growth activated sludge treatment systems 
that rely upon the membrane equipment for liquid/solid separation prior to the discharge of 
the leachate. Two reasons that exist for the poor removal efficiency of the individual 
treatment system is the high percentage of high molecular weight organic material and 
ammonium concentration to be removed and biological inhibition caused by the heavy 
metal which may be present in the leachate.  

 

Sufficient knowledge about the capability and the performance of membrane 

bioreactors plants for leachate treatment is yet to be found. Moreover, membrane systems 
are often subjected to clogging and this poses serious problems for operation and 
maintenance. In order to reduce the problems of frequent membrane clogging, the 
application of yeast culture to treat wastewater can be considered. The membrane 
bioreactor system with yeast can be employed to treat the wastewater containing high 
amount of dissolved solids, high concentrations of organic matter and other substances, 
which are difficult to treat using conventional biological systems.  
 
 

Consequently, depending on the characteristics of the leachate, a combination of 

biological and physio-chemical processes can achieve high removal efficiencies. Thus, the 
objective of this study is introducing the emerging technology of membrane bioreactors 
and its role in leachate treatment. Thereafter, a rationale has been developed for the 
treatment of the leachate produced under tropical conditions of Thailand. The experiments 
have been conducted in the laboratory to find the performance of membrane bioreactor 
using yeast culture (YMBR) and bacteria culture (BMBR) and coupled with ammonia 
stripping for removal of organic substances from the landfill leachate. This treatment 
system could act as an innovative approach in the future with regard to the landfill 
management practices. 
 
1.2   Objectives of the Study 

 

 

 The objectives of this study are to investigate the performance of membrane 

bioreactor using yeast culture and bacteria culture and to examine the prospects of 
applying membrane bioreactor in landfill leachate treatment. The specific objectives are as 
follows: 

 

background image

 4 

1.  To investigate and evaluate the performance of membrane bioreactor using yeast 

culture (YMBR) and bacteria culture (BMBR) for the treatment of  landfill leachate 
containing high organic and high ammonia concentrations; 

 

2.  To investigate and evaluate the performance of ammonia stripping coupled 

membrane bioreactor process for the landfill leachate treatment and to compare the 
results with the treatment performance without pre-treatment; 

 

3.  To evaluate the respiratory inhibition effects of ammonia and lead concentrations on 

mixed yeast and mixed bacteria culture; 

 
4.  To investigate the potential of ammonia stripping for ammonia removal and examine 

the factors influencing the ammonia removal efficiency; 

 

5.  To understand the effect of membrane fouling through sludge characteristics. 

 

1.3   Scope of the Study 
 
 

To achieve the above mentioned objectives, the following tasks are undertaken: 

 

1.  Characterization and mixing of leachates obtained from Pathumthani landfill site 

(PS) and Ram-indra transfer station (RIS) was done to simulate a medium-aged 
leachate. The leachate COD concentration was maintained at 8,000±1,000 mg/L, 
BOD/COD ratio at 0.40±0.05, and TKN concentration at 1,900±100 mg/L. This 
laboratory simulated leachate was used to evaluate the performance of the treatment 
process. 

 
2.  The yeast culture membrane bioreactor (YMBR) and bacteria culture based 

membrane bioreactor (BMBR) were optimized varying the HRT and MLSS 
concentrations. The optimum operational condition was evaluated in terms of organic 
and TKN removal efficiencies and membrane filtration performance. 

 

3.  The removal of ammonia through ammonia stripping was carried out by varying the 

pH, gradient velocity and contact time. The process efficiency was evaluated in 
terms of ammonia removal efficiency. After the optimization of the operating 
conditions of the ammonia stripping and the membrane bioreactor, the optimum 
conditions were used to assess the efficiency of the membrane bioreactor using the 
bacterial and yeast culture along with the ammonia stripping.  

 

4.  To evaluate the inhibition effects of ammonium (NH

4

-N) and lead (Pb) on mixed 

yeast and mixed bacteria sludge. The NH

4

-N concentration was varied from 200 to 

2,000 mg/L in both sludge. The lead nitrate (Pb(NO

3

)

2

) concentration in the bacteria 

system was varied from 20 to 100 mg/L while in the yeast system was varied from 2 
to 25 mg/L. The inhibitory effect was measured in terms of oxygen uptake rate 
(OUR) using respirometric method. 

 
5.  The sludge characteristics were analyzed to understand their relationship with the 

EPS formation in the membrane bioreactor. The molecular weight cut-off was also 
done in the sludge along with the fraction causing COD. 

 

background image

 5 

Chapter 2 

 

Literature Review 

 
 
2.1   Introduction

 

 

A landfill is any form of waste land, ranging from an uncontrolled rubbish "dump" to 

a full "containment" site engineered with high standards to protect the environment. The 
landfill is the most economical form of solid waste disposal as adverse environmental 
effects and other risks and inconveniences are minimized, thereby allowing waste to 
decompose under controlled conditions until it eventually transforms into relatively inert, 
stabilized material (Robinson and Maris, 1983). Most landfills can be operated 
satisfactorily for at least some period in their lifetime in this manner and in absence of any 
significant negative environmental impact. 

 

Unfortunately, in warmer climates, the increase in leachate production after 

precipitation is rapid (Lema, et al., 1988) due to rainfall exceeding the amount which can 
be effectively evaporated during winter or rainy seasons.  Hence, leachate generation needs 
to be controlled and effective leachate treatment options have to be identified in order to 
avoid negative impacts caused by the leachate.  
 

A common practice in controlling leachate generation is to control the water 

infiltration in the landfill by waste compaction as it reduces the infiltration rate. Further, by 
designing water proof covers and growing plants on the soil covers of the waste, 
infiltration can be minimized. Figure 2.1 presents a typical engineered landfill. The landfill 
leachate characteristic is controlled by solid waste characteristics, moisture content, pH, 
redox potential, temperature, etc. The presence of moisture is necessary for the biological 
conversions within the landfill and for landfill stabilisation, which occurs when there is 
insufficient moisture. Degradation processes within the landfill are also temperature 
dependent. The pH and redox potential set the conditions for the different phases of 
degradation and biological processes within the landfill. Thus, the microbial composition 
within the landfill effectively contributes to the landfill stabilization.  
 

After the initial period of waste placement in a landfill, microbial processes proceed 

under anoxic conditions. Hydrolytic and fermentative microbial processes solubilize the 
waste components during the acid fermentation phase producing organic acids, alcohols, 
ammonia, carbon dioxide and other low molecular weight compounds as major products. 
This process occurs at a low pH (typically around 5) and is enhanced by the presence of 
moisture within the landfill. After several months, the methane fermentation stage occurs. 
Methanogenic leachate is neutral in pH and possesses moderate organic compounds which 
are not easily degradable and are fermented to yield methane, carbon dioxide and other 
gaseous end products (Harmsen, 1983; Farquhar, 1989).  
 
 
 
 
 
 
 

background image

 6 

 
 

Figure 2.1 Schematic Representation of a Typical Engineered Landfill 

 
2.2   Solid Waste Management Practices  
 
 

The safe and reliable long-term disposal of solid waste is an important component in 

solid waste management. Municipal solid waste consists of inorganic substances such as 
boxes, grass clippings, furniture, clothing, bottles, food scraps, newspapers, and appliances 
along with organic waste. There are different methods employed in solid waste 
management. Few of the management practices are as follows: 
 

(a) Reduction in the exploitation of the resources and the minimization of waste 
(b) Increase in recovery/reuse by placing increased responsibility on the producer 
(c) Incineration 
(d) Composting 
(e) Landfilling, etc. 
 
Landfilling or the land disposal is today the most commonly used method for waste 

disposal. Landfill has been the most economical and environmentally acceptable method 
for the disposal of solid waste throughout the world. Even with the implementation of 
waste reduction, recycling and transformation technologies, disposal of solid waste in the 
landfill still remains an important component of the solid waste management strategies. 
  

Concerns with the landfilling of solid waste are related to (1) the controlled release 

of landfill gases that might migrate off-site and cause odor and other potentially dangerous 
conditions, (2) the impact of the uncontrolled discharge of landfill gases on the green 
house effect  in the atmosphere , (3) the uncontrolled release of leachate that may migrate 
down to underlying groundwater or to surface water, (4) the breeding and harboring of 
disease vectors in an improperly managed landfills, and (5) the health and environmental 
impacts associated with the release of trace gases arising from the hazardous materials.  
 
2.3   Municipal Solid Waste Landfill 

Perimeter  

Collection Pipe 

Low Permeability Soil 

Collection 

Pipes

Collection 

Pipes 

Drainage 

Layer 

Gas Vent

Solid waste 

Lower Component 

(Compacted Soil) 

Upper 

Component 

Top Liner 

(FML) 

Native Soil Foundation 

Filter 

Layer 

Leachate Collection  

System 

Leak Detection 

System 

Protective Soil 

or Cover 

Barrier Layer 

(FML) 

Filter Layer 

Compacted 

soil 

Cap Drainage  

System 

Drainage Layer 

Top Soil 

Final Soil Cover 

background image

 7 

 

In the municipal solid waste landfill, biodegradable waste constituents are converted 

into intermediates and end products, primarily by initial hydrolysis to intermediate 
substrates which support acidogenesis and product are subsequently utilized as precursor 
for gas formation during methanogenesis in the five degradation phases (Pohland and 
Harper, 1985; Pohland and Kim, 1999). Figure 2.2 represents variation in concentrations of 
significant parameters during the five degradation phases.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2.2 Changes in Significant Parameters during Different Phases of Landfill 

           

Stabilization (Pohland and Harper, 1985) 

 

The trend in the degradation phase may not uniform throughout the landfill since 

there are certain regions in the landfill which are dominated by a particular degradation 
phase. Hence, the leachate generated is a combination of the products of different 
microbial and physico-chemical processes taking place within the landfill. 
 
2.4   Municipal Solid Waste Landfill Leachate 
 

Landfill leachate is a high-strength wastewater formed as a result of percolation of 

rainwater and moisture through waste in a landfill. The liquid medium absorbs nutrients 
and contaminants from the waste and thus posing hazard to the receiving water bodies. 
Leachate contains many substances, depending upon the types of waste disposed into the 
landfill. Leachate may be toxic to life or may simply alter the ecology of the stream 
watercourse, if not removed by treatment.  

 

Depending on the geographical and geological nature of a landfill site, leachate may 

seep into the ground and possibly enter groundwater sources. Though part of the 
contaminants from the leachate can be removed by natural processes within the ground, 
groundwater contamination can be hazardous as drinking water sources may be affected.  
 

The simplest method of leachate treatment is disposal into the public sewer. However, 

as there is considerable difference between the leachate and domestic wastewater 
characteristics, the volume of leachate discharged is limited. Further, depending on 

Carbon 
Emission

Heavy Metal 
Emission

Redox
Potential

Concentrat

io

n

Low

High

Aerobic

Acidogenic Methanogenic Oxidation Weathering

Degradation Phases

Carbon 
Emission

Heavy Metal 
Emission

Redox
Potential

Carbon 
Emission

Heavy Metal 
Emission

Redox
Potential

Concentrat

io

n

Low

High

Aerobic

Acidogenic Methanogenic Oxidation Weathering

Degradation Phases

 

background image

 8 

leachate characteristics, it may be necessary to pre-treat leachate prior to discharge in 
wastewater treatment plants so that it does not upset the biological process nor cause any 
operational and maintenance problems in the treatment plant. In determining a treatment 
scheme for leachate treatment, it is also necessary to determine whether the leachate 
effluent meets sewer or water body discharge standards. 
 
2.5   Leachate Composition and Characteristics 
 

 
During the first few years (< 5 years), the landfill is in acidogenic phase and the 

leachate generated is generally referred to as “young” or carbon-based leachate due to the 
high concentration of organic carbon present. Landfill greater than 10 years old are 
generally in the methanogenic phase and the leachate generated is referred to as “old” or 
nitrogen-based leachate (Mavinic, 1998). Table.2.1 gives the characteristic of leachate 
present in acidogenic and methanogenic phases. 

 

 

Table 2.1 Leachate Characteristic in Acidogenic and Methanogenic Phase in a Landfill 
(Ehrig, 1998) 
 

Parameter Unit 

Average Range 

Acidogenic Phase 
pH 

  

6.1 

4.5 to 7.5 

BOD

5

 

mg/L 

13,000 

4,000 to 40,000 

COD 

mg/L 

22,000 

6,000 to 60,000 

BOD

5

/COD  

 

0.58 

SO

4

 

mg/L 

500 

70 to 1,750 

Ca 

mg/L 

1,200 

10 to 2,500 

Mg 

mg/L 

470 

50 to 1,150 

Fe 

mg/L 

780 

20 to 2,100 

Mn 

mg/L 

25 

0.3 to 65 

Zn 

mg/L 

0.1 to 120 

Methanogenic  Phase 
pH 

  

7.5 to 9 

BOD

5

 

mg/L 

180 

20 to 550 

COD 

mg/L 

3,000 

500 to 4,500 

BOD

5

/COD  

 

0.06 

SO

4

 

mg/L 

80 

10 to 420 

Ca 

mg/L 

60 

20 to 600 

Mg 

mg/L 

180 

40 to 350 

Fe 

mg/L 

15 

3 to 280 

Mn 

mg/L 

0.7 

0.03 to 45 

Zn 

mg/L 

0.6 

0.03 to 4 

 

The differences in leachate quality can be due to varied reasons, which can be 

categorised into four major divisions, namely the waste (type of waste, degree of 
decomposition, and possible seasonal variance), landfill environment (phase of degradation, 
humidity, temperature etc.), filling technique (compacting, cover, height of landfill layers, 
etc.) and sampling (method of analysis and point of sample collection). 
 

The factors affecting the leachate quality is inter-related and affects the overall 

variance in leachate quality and characterization. The changes in the BOD/COD, 

background image

 9 

COD/TOC, VS/FS and VFA/TOC ratios of leachate are depends greatly on the age of the 
landfill (Chian and DeWalle, 1976; Kylefors, 1997). Figure 2.3 represents the trend of 
leachate variation and over the period of time in the landfill. During the initial stages, the 
landfill is aerobic rich in biodegradable organic content. As the landfill age increases, the 
microorganism present in the landfill tend to degrade these organic compounds into 
inorganic components.  When anaerobic phase begins, the COD starts increasing causing a 
decrease in BOD/COD ratio.  This decrease in BOD/COD ratio observed, suggests the 
change in biodegradability of the leachate with time.  For young landfill, the ratio is around 
0.5-0.8 while it reaches almost 0.1 in the old landfill. The reason for low biodegradability 
in the old landfill could be due to the presence of humic and fluvic acids. 
 
 

 
 

Figure 2.3 Variation in Significant Pollutant Ratios with Increase in Age of the Landfill

 

   (Chian and DeWalle, 1976)

 

 

The ammonium concentration in the leachate also varies with age of the landfill, with 

young leachate having a high COD (>5,000 mg/L) and low nitrogen content (< 400 mg 
N/L) and old leachate having a high concentrations of ammonia (> 400 mg N/L) and 
recalcitrant compounds and a low biodegradable organic fraction (BOD

5

/COD = 0.1).  

 

Municipal solid waste landfill in Asia (except Japan) is characterized by 60 to 90 % 

organic waste and 3 to 18 % plastic (Agamuthu, 1999). Leachate characteristics of landfills 
surveyed in Asia including Thailand, Europe, and America are presented in Table 2.2. The 
characteristic of leachate from different landfill site as reported show a great variation. It is 
dependent on the solid waste composition, landfill site location, and local climate. The 
BOD and COD concentrations decrease as the landfill age increases.  
 

 

background image

 10 

Table 2.2 Comparison of Leachate Characteristics of Landfills Surveyed in Asia, Europe and America  
 

Thailand

1,2

  

Malaysia

3

  

  

Parameter  

 

Phitsanuklok Pathumthani Nakhonpathom Pathumthani On-Nutch 

Air 

Hitam 

Sabak 

Bernam 

Taman 

Beringin 

           HongKong

4

 

   

  

USA

5

 

 

Europe

6

 

  

Years in 
operation 1 

9  20 5 7 16 6 10 1 5 16  

Alkalinity 300-4,700 918-4,250  960-2,740 

6,620 

 

1,540-

9,000 

1,200-

1,550 

3,750-

9,375 

10,700-

11,700 

3,230-

4,940 

800-

4,000 

5,810 2,250 

300-

11,500 

pH 7.1-8.3 

8.2-8.9 

8.2-8.5 

8.1 

7.5 

7.6-8.8 

8.0-801 

7.8-8.7 

8.1-8.6 

7.6-8.1 

5.2-6.4 

6.3 

 

5.3-8.5 

Chloride 

 - 

1,220-5,545 

655-2,200 

2,530 

 - 

1,625-

3,200 

420-

1,820 875-2,875 

2,320-

2,740 522-853 

600-800 1,330 

70 

 

SS 1,950 

29-110 

8.4-15.7 

12.5 

488 

410-

1,250 

111-920 

420-1,150 

40-53 

3-124 

 - 

 - 

 - 

 - 

TS 6,700 

350-1,598 

274-1,200 

848 

11,320 

13,930-

15,380  

10,300-

13,680 

 - 

 - 

100-700 

 - 

 - 

 - 

COD 4,900-11,000 

1,488-3,200 

800-3,575 3,200 1,200 

1,724-

7,038 

1,250-

2,570 

1,960-

5,500 

2,460-

2,830 641-873 

10,000-

40,000 8,000  400 

150-

100,000 

BOD 3,000-7,150 

198-260 

100-240  280 130 

1,120-

1,800 

726-

1,210 

562-1,990 

 - 

 - 

7,500-

28,000 

4,000 80 

100-

90,000 

TKN 

 - 

240-452 

64-1,260 

1,256 

700 

131-930 

 - 

104-1,014 

2,219-

2,860 

889-

1,180 

 - 

 - 

 - 

50-5,000 

NH

3

-N 

150-1,250 

 - 

 - 

 - 

 - 

 2-32 

 3-8 

 2-47 

1,190-

2,700 

784-

1,156 

56-482 

 - 

 - 

1-1500 

Ni 

0.02-1.56 

0.01-0.42 

0.1 

0.25 

0.035 

0.13-0.95 

 - 

0-0.6 

 - 

 - 

 - 

 - 

 - 

0.02-2.05 

Cd 

0.037 

0.02 

0.001 

0.002 

 - 

0-0.23 

0-0.001 

0-0.15 

 - 

 - 

 - 

<0.05 

<0.05 

0.14 

Pb 

0.03-0.45 

0.07 

0.05 

 - 

0.52 

0-5.37 

0-0.03 

0-3.45 

 - 

 - 

 - 

0.5 

1.0 

1.02 

Cr 

 - 

0.01-0.52 

0.08-2.9 

0.07 

 - 

0.24-0.94 

 - 

0.04-0.70 

 - 

 - 

 - 

 - 

 - 

0.03-1.60 

Hg 

0.50-1.70 

 - 

 - 

 - 

0.684 

 - 

 - 

 - 

 - 

 - 

 - 

 - 

 - 

0.05 

Note: All data with the exception of pH values are in mg/L. 
1. Pollution Control Department, 2000     3. Agamuthu, 1999                 5. Qasim and Chiang, 1994  
2. Sivapornpun, 2000                                4. Robinson and Luo, 1991     6. Andreottola and Cannas, 1992 

 

 

background image

 11 

Table 2.3 presents the general leachate characteristics with age and suitability of 

treatment options in terms of biodegradable, intermediate and stabilized landfill leachate. 
As the young landfill is rich in organic, biological treatment is more appropriate than 
physico-chemical which is suitable for the old landfill. However, effectiveness of 
combined treatment process for the treatment of a leachate produced at specific landfill age 
has not been considered. Individual treatment options cannot be a long-term solution for 
leachate treatment as they are not effective in treating leachate generated at different period 
of time and do not adapt to changing leachate characteristics.  
 
Table 2.3 Relation between Landfill Age, Leachate Characteristics and Treatments 
(Amokrane, et al., 1997) 
 

Landfill Age (years) 

< 5 (young) 

5 to 10 (medium) 

> 10 (old) 

Leachate Type 

I (biodegradable) 

II (intermediate) 

III (stabilized) 

pH 

< 6.5 

6.5 to 7.5 

> 7.5 

COD (mg/L) 

> 10,000 

< 10,000 

< 5,000 

COD/TOC 

< 2.7 

2.0 to 2.7 

> 2.0 

BOD

5

/COD 

< 0.5 

0.1 to 0.5 

< 0.1 

VFA (% TOC) 

> 70 

5 to 30 

< 5 

Process Treatment 

Efficiency 

Biological Treatment 

Good 

Fair 

Poor 

Chemical Oxidation 

Fair-poor 

Fair 

Fair 

Chemical Precipitation 

Fair-poor 

Fair 

Poor 

Activated Carbon 

Fair-poor 

Good-fair 

Good 

Coagulation-flocculation Fair-poor  Good-fair 

Good 

Reverse Osmosis 

Fair 

Good 

Good 

 

2.6   Molecular Weight Distribution in Landfill Leachate 
 

Ultrafiltration (UF) is demonstrated to be an effective method for characterizing 

leachate on the basis of molecular weight (MW) distribution (Gourdon, et al., 1989; Tsai, 
et al., 1997; Yoon, et al., 1998; Kang, et al., 2002). The UF cell is operated in a batch 
mode with nitrogen gas applied to pressurize the system, producing a driving force for 
leachate to permeate through the membranes.  
 

The organic components of leachate are mainly composed of water soluble 

substances. The suspended solid content of leachate is generally very low. Organic matter 
is dependent on the waste composition and degree of degradation. The predominant 
substances in each fraction are given in Table 2.4. 
 

Low molecular weight organics are composed mainly of easily degradable volatile 

fatty acids, which contribute to 90 % of this fraction. The most frequently occurring fatty 
acids are: acetic, propionic and butanic acids.  

 
Medium molecular weight compounds with molecular weight between 500 and 

10,000 Da are characteristic of fulvic acid and humic fraction present in leachate. This 
group is dominated by carboxylic and hydroxylic groups and are difficult to degrade, thus 
termed refractory compounds. The high molecular weight organic fraction varies from 0.5 
% in methanogenic landfill leachate to 5 % in acidogenic landfill leachate. These 
compounds are more stable and possibly originate from cellulose or lignin. 

background image

 12 

Table 2.4 Classification of Types of Substances Using Molecular Weight Cutoff (Chian, 
1977; Harmsen, 1983) 
 

Division Molecular 

Weight 

Substances 

MW <500 Da 

Low Molecular Weight 

Volatile fatty acids 
Amino acids, Alcohol, Organic acids

MW 500-10,000 Da  Medium Molecular 

Weight 

Carboxyl and aromatic hydroxyl 
groups 
Fulvic-like substances 

MW >10,000 Da 

High Molecular Weight 

Carbohydrates, Proteins 
Humic carbohydrate-like substances 

 

Thurman and Malcolm (1981) reported humic substances (hydrophobic acids) 

accounted for about 50 to 90 % of the dissolved organic carbon (DOC) present in leachate, 
whereas Imai, et al. (1995) indicated that humic substances contributed to only 30 % of the 
DOC. This implies that non-humic substances (hydrophobic neutrals and bases, 
hydrophilic acids, neutrals and bases) may be more important than humic substances in 
terms of refractory characteristics of leachate.  
 

The effectiveness of a treatment process can be related to the removal of specific 

organic fraction in leachate. Both fulvic and humic substances are inert to biological 
treatment. The accumulation of high molecular humic carbohydrates were found to affect 
bacteria flocculation (Chian and DeWalle, 1976). Therefore, fractionating the organic 
based on molecular weight, is an indication of the removal efficiency and degradation 
potential of the biological system.  
 

Generally, leachate is highly contaminated with organic concentrations measured as 

BOD and COD, with ammonia, halogenated hydrocarbons and heavy metals. The humic 
substances constitute an important group of organic matter in leachate (Chain, 1977; 
Lecoupannce, 1999). These substances can be compared with humic substances of natural 
organic matter (NOM). Humic substances are refractory anionic macromolecules of 
medium MW (1,000 Da MW- fluvic acids) to high MW (10,000 Da MW-humic acids). 
They contain both aromatic and aliphatic components with primarily carboxylic and 
phenolic functional groups. In many case, 500 to 1,000 Da MW fluvic-like fraction 
increases with landfill ages and after a biological treatment (Mejbri, et al., 1995). 
Therefore, a post treatment step is usually required for complete removal of organics 
(Rautenbach and Mellis, 1994). 
 
2.7   Factors Affecting Leachate Composition 
 

In order to arrive at an appropriate treatment process, it is necessary to understand 

the leachate characteristic and the factors affecting it. Generally, the quantity of leachate is 
a direct function of the amount of external water entering the landfill. Landfill leachate is 
composed of the liquid that has entered the landfill from external sources, such as surface 
drainage, rainfall, groundwater and the liquid produced from the decomposition of waste. 
A generalised pattern of leachate formation is presented in Figure 2.4. 
 
 

background image

 13 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.4 Water Movements in the Landfill

 

 
 
2.7.1  Seasonal Variation 
 
 

Rainfall acts as a medium of transportation for leaching and migration of 

contaminants from a landfill. Rainfall also provides the required moisture content for 
methane production and biological activity.  Figure 2.5 shows that the leachate production 
varies to a great extent with the amount of rainfall. It has been experienced that in hot and 
humid climates, leachate production is much higher and varies more than in hot and arid 
regions due to intensive microbial activity

 

(Trankler, et al., 2001). During dry season, the 

leachate production is very low due to the evaporation whereas in raining season, the 
leachate production is related to amount of rainfall intensity. Therefore, when designing a 
landfill for disposal of municipal waste, and developing a treatment scheme for leachate 
treatment, the quality and quantity of leachate may be influenced by climate and microbial 
activity

.

 On the other side, though high rainfall leads to increased leachate production, it 

reduces leachate strength due to the dilution. The quality of leachate produced may be 
regarded as proportional to the volume of water percolating through the landfill waste. 
Reduction of the quantity of water entering the tip is therefore of great importance in 
reducing the rate of leachate generation (Tatsi and Zouboulis, 2002). Few researchers have 
measured the temporal variation in leachate production as 2-45 L/s, depending largely on 
the precipitation over the landfill (Martin, et al., 1995). The influence of seasonal variation 
in the landfill leachate quality and quantity varies from place to place which is also 
influenced by other factors. It is necessary to consider the hydrological and leachate quality 
data while suggesting a treatment for leachate to avoid environmental deterioration 
problems caused by direct disposal. 

Precipitation 

Ground 

Ground 

Leachate 

Surface runoff 

Surface  
runoff 

Evaporation 

Evaporation 

Storage 

Gas 

Gas 

Ground water 

Ground water 

Leachate 

  

background image

 14 

 

Figure 2.5 Leachate Productions and Rainfall Variation with Time  

 

          (Visvanathan, et al., 2003) 

 
2.7.2  Landfill Age 

 

 

Leachate sampling and analysis are of importance in assessing the changes in 

leachate quality over a period of time. A distinction of the age of a landfill can be made on 
the basis of the dominating degradation phase within the fill and the composition of the 
leachate generated. The response of landfill leachate quality and quantity to the climatic 
variation depends on the age of the landfill. Few significant variations such as a decreasing 
trend of BOD/COD are evident as the landfill age increases. The BOD/COD ratio depicts 
the biodegradability of the leachate, with a ratio of 0.5 indicating a readily degradable 
organic material while a value of 0.1 or below represents a high fraction of poorly 
degradable organic material in the leachate (Table 2.3). The variation in the quality of 
leachate from a landfill in Taiwan composed of ten different units closed each year is 
expressed in Table 2.5. From the given table, it could be observed that as the landfill gets 
stabilized, BOD and COD concentrations reduce along with decrease in biodegradability. 
Nitrogen concentration is another indicator which signifies the age of the landfill leachate 
as presented in Table 2.6 and 2.7. The ammonia concentration in leachate is high due to 
hydrolysis, decomposition, and fermentation of biodegradable substrate. Owing to the 
anaerobic conditions within landfill, nitrite and nitrate concentrations are low. In the first 
few years, the ammonia concentration tends to increase slightly over time and then 
decreases as the landfill age increases. Thus, it could be appropriate to say that looking at 
the leachate characteristic, the age of the landfill can be predicted to a great extent. 

 

 

0

20

40

60

80

1/

1/

02

31

/1

/0

2

2/

3/

02

1/

4/

02

1/

5/

02

31

/5

/0

2

30

/6

/0

2

30

/7

/0

2

29

/8

/0

2

28

/9

/0

2

28

/1

0/

02

27

/1

1/

02

27

/1

2/

02

Date/Month/Year

0

20

40

60

1/

1/

02

31

/1

/0

2

2/

3/

02

1/

4/

02

1/

5/

02

31

/5

/0

2

30

/6

/0

2

30

/7

/0

2

29

/8

/0

2

28

/9

/0

2

28

/1

0/

02

27

/1

1/

02

27

/1

2/

02

L

e

ac

h

ate

 P

ro

d

u

cti

o

n

 (

L

/d

)

Ra

in

fa

ll

 (

m

m

)

0

20

40

60

80

1/

1/

02

31

/1

/0

2

2/

3/

02

1/

4/

02

1/

5/

02

31

/5

/0

2

30

/6

/0

2

30

/7

/0

2

29

/8

/0

2

28

/9

/0

2

28

/1

0/

02

27

/1

1/

02

27

/1

2/

02

Date/Month/Year

0

20

40

60

1/

1/

02

31

/1

/0

2

2/

3/

02

1/

4/

02

1/

5/

02

31

/5

/0

2

30

/6

/0

2

30

/7

/0

2

29

/8

/0

2

28

/9

/0

2

28

/1

0/

02

27

/1

1/

02

27

/1

2/

02

L

e

ac

h

ate

 P

ro

d

u

cti

o

n

 (

L

/d

)

Ra

in

fa

ll

 (

m

m

)

background image

 15 

Table 2.5 Variation of COD, BOD & BOD/COD with Increasing Landfill Ages  
(Ragle, 1995) 
 

Age (year) 

1  2  3 4 5 6 7 8 9 10 

11 

BOD 
(mg/L) 

25,000 

10,000 290 260 240 210 190 160 130 100  80 

COD 
(mg/L) 

35,000 16,000 1,850 1,500 1,400 1,200 1,200 1,150 1,100 1,050 1,000 

BOD/COD  0.71  0.60  0.17 0.17 0.16 0.16 0.14 0.13 0.10 0.08 0.08 

 
 
Table 2.6 Nitrogen Concentrations from Various Sources 
 

Sample 

 

Age 

(Year) 

NH

3

-N 

(mg/L) 

Organic-N 

(mg/L) 

NO

3

-N 

(mg/L) 

Sewage

1

 - 

15 

10 

Young leachate

1

 1 

1,000-2,000 

500-1,000 

Pillar Point (Hong Kong) 

2,563 

197 

2.5 

Ma Yau Tong (Hong Kong)

2

 10 1,156 

24  1.1 

Several sites (Germany)

1

 12 

1,100 -  - 

Du Page Co. (Illinois)

1

 15 

860 

Rainham (UK.)

1

 24 

17 

Waterloo (Canada)

1

 35 

12 

Sources: 1 McBean, et al., 1995.   2 Robinson and Luo, 1991 

 
 
Table 2.7 Nitrogen Concentration Ranges in the Leachate for Landfill Stabilization 

 

Leachate/Gas 

Constituent 

Transition 

Phase 

Acid Formation 

Phase 

Methane 

Fermentation 

Phase 

Final 

Maturation 

Phase 

TKN (mg/L) 

180-860 

14-1,970 

May be low due to 
microbial assimilation 
of nitrogeneous 
compounds  

25-82 

Low due to 
microbial 
assimilation of 
nitrogeneous 
compounds 

7-490 

NO

3

-N (mg/L) 

0.1-5.1 

Increasing due 
to oxidation of 
ammonia 

0.05-19 

Decreasing due to 
reduction to NH

3

 or 

N

2

 gas 

Absent 

Complete 
conversion to NH

3

 

or N

2

 gas 

0.5-0.6 

NH

3

-N (mg/L) 

120.125 

2-1,030 

Increasing due to NO

3

 

reduction and protein 
breakdown 

6-430 

Decreasing due to 
biological 
assimilation 

6-430 

NH

3

/TKN Ratio 

0.1-0.9 

0-0.98 

Protein breakdown; 
biological 
assimilation 

0.1-0.84 

 

0.5-0.97 

Nitrogen Gas (%) 

70-80 

Influence of 
trapped air 

60-80 

Decreasing due to 
dilution with CO

2

 

< 20 

Artefact of trapped 
air; denitrification 

> 20 

Aerobic 
metabolism 

 

background image

 16 

2.7.3  Composition of the Waste Dumped 
 

The leachate quality is greatly affected by refuse composition. Organic material 

present in the waste mainly comprises of kitchen waste while the inorganic constituents 
consists of the plastic, glass, metal, etc. The leachate composition depends upon the ratio 
of organic and inorganic components present in the waste disposed in the landfill. It is 
estimated that approximately one half of the municipal solid waste is typically composed 
of cellulose and hemicellulose (Fairweather and Barlaz, 1988; Barlaz, et al., 1989), which 
are considered readily degradable in the environment. The organic content leached into the 
leachate is as a result of hydrolysis and degradation of higher molecular weight organic 
compounds by the microorganisms present in the waste. However, it has been shown that 
readily degradable refuse components can sometimes persist for surprisingly long periods 
of time in landfills owing to several environmental factors that limit the microbial growth 
(Suflita,  et al., 1992; Gurijala and Suflita, 1993). The other factors which influence the 
leachate are the moisture content, nutrients and organic loading in the solid waste disposed. 
 
2.7.4  Geological Characteristic 

 
As the leachate percolates through the underlying strata, many of the chemical and 

biological constituents originally contained in it will be removed by filtering and 
adsorptive capacity of the material composing the strata. In general, the extent of this 
action depends on the characteristics of the soil and especially the clay content. With this 
potential, it can allow the leachate to percolate into the landfill for elimination or 
contamination, thereby playing a role in affecting the leachate quantity. The influence of 
soil particle size, the type of soil in the underlying ground and cover material are factors 
that further influence leachate production and strength. 
 
2.7.5  Filling Technique 
 

Various factors during the filling of the municipal solid waste in the landfill 

influence the leachate quality and quantity to a great extent. 
 

Filling Height: The surface to volume ratio of the waste in landfill has an impact 

over the infiltration, heat transfer and gas exchange occurring within the landfill. It is 
expected that an increase in landfill height may limit the affect of seasonal variation in the 
leachate composition and can preserve the heat from the microbial action to enhance 
further degradation. However, aerobic conditions can be hindered due to limitations in gas 
transfer, thereby converting it into anaerobic conditions, thus affecting the leachate quality. 
 

Density: Waste with low density results in a larger volume of air infiltrating through 

the landfill and thus promoting aerobic degradation process. This enhances the degradation 
of easily degradable waste fractions and complex organic and also elevates temperature 
within the landfill which can in turn improve conversion into inorganic constituents.  A 
prolonged aerobic phase can lead to a drought condition within the fill and reduce 
degradation rates.  
 

Enhanced Stabilization: In order to reduce the time required for leachate treatment, 

it is necessary to enhance leachate stabilization. Stabilization can be accomplished by two 
ways namely, pre-treatment by size reduction, mixing and pre-composting or by using flow 
systems to influence the environmental conditions within the landfill. Continuous flow 

background image

 17 

entails the re-circulation of leachate or abstraction of gas within the fill. Kylefors (1997) 
reported that leachate re-circulation affects landfill stabilization by removing the waste 
products after degradation from the liquid phase, allowing the addition and distribution of 
microorganisms and nutrients with the landfill and maintaining homogeneous conditions 
within the fill.  
 

Separation of Leachate: Different waste categories at municipal solid landfills will 

generate leachate with varying characteristics. Since, this contributes to the complexity in 
leachate treatment, it may be beneficial to sort waste in terms of the leachate characteristics 
in order to improve the efficiency of the treatment (Kylefors, 1997). This can be achieved 
by separation of leachate based on waste characteristics and by separation of leachate 
based on degradation phases. Further, the composition of the waste landfilled can also be 
altered by the addition of nutrients, seed and buffers to improve the microbial processes 
within the fill. Generally, a combination of digested sewage sludge and alkaline ash is 
added to enhance methanogenesis.  
 

Bottom Liners and Top Covers: The bottom liners are selected to prevent seepage 

of leachate into the groundwater sources, whilst top covers aid in maintaining moisture 
within the fill as well as limiting infiltration, thus slowing down the degradation process. 
  
2.8   Leachate Treatment 
 

Most solid waste disposal sites do not have the proper leachate treatment system. 

Though varied treatment processes are used for leachate treatment, most of them are not 
properly designed to cope with quantity and characteristics of the generated leachate. 
Therefore, the objective for leachate management in solid waste disposal should be to 
develop leachate treatment system having low area requirement and which is also cost 
effective, to identify significant factors which have to be considered in leachate treatment 
system and finally to set up a suitable criteria and prepare guidelines for proper leachate 
treatment in municipal solid waste disposal dump sites so as to reduce contamination and 
environmental impacts.  
 

Leachate treatment is dependent on the quality and quantity of the leachate input, 

discharge limits or removal efficiency requirements, quantity of residual products and their 
management, site location and economics. However, high ammonia concentrations and the 
typical phosphorus deficiency in landfill leachate hamper the biological treatment 
efficiencies. Therefore, a general consensus among researchers is high nitrogen levels 
which are still hazardous to receiving waters and needs to be removed prior to discharge. 
This is generally carried out through biological nitrification-denitrification processes for 
young leachate and through physico-chemical processes for stabilised landfill leachate. 
The success of treatment process depends on the characteristics of the leachate and age of 
the landfill.  
 

  Several wastewater treatment processes have been generally used to treat landfill 

leachate (Amokrane, et al., 1997). The major biological treatment processes comprises of 
activated sludge (AS), sequencing batch reactor (SBR), rotating biological contactor 
(RBC), etc and physical and chemical treatment processes comprises of oxidation, 
coagulation-flocculation, chemical precipitation, activated carbon absorption and 
membrane processes. 
  

background image

 18 

2.8.1  Biological Treatment Processes 
 

The majority of leachate treatment schemes that have been successfully installed on 

landfill sites have been anaerobic biological treatment process through aerobic treatments 
have also been in use. The drawbacks generally experienced in biological leachate 
treatment originate from operational problems such as: foaming, metal toxicity, nutrient 
deficiency and sludge settling (Qasim and Chiang, 1994). Among the various biological 
treatment processes, Sequencing Batch Reactors (SBR) have been proved as a reliable and 
robust method for leachate treatment to meet specified effluent consent values.  
 
  

Conventional aerobic systems consist of either attached or suspended growth systems. 

The advantages and disadvantages of each system is case specific. Aerobic systems range 
from aerated lagoons, activated sludge and sequence batch reactors (SBR) while attached 
growth processes include trickling filters and rotating biological contactors. Trickling 
filters are generally not used for leachate treatment when the leachate contains high 
concentrations of organic matter (or precipitate-forming inorganic compounds), because of 
the large sludge production which result in clogging of the filters.   
 

Activated Sludge Process 

  

The activated sludge process is efficient in leachate treatment. Although there is 

variability in the leachate quality depending on the source and over a period of time from a 
single source, biokinetic studies conducted by various researchers indicated a consistency 
in results as cited in Qasim and Chiang (1994) as presented in Table 2.8. A comparison of 
biokinetic coefficients from various sources show remarkable consistency considering the 
highly variation. It was found that at any BOD concentration of landfill leachate, the yield 
coefficient (Y) is in the same range as domestic wastewater. This might be due to change 
in the predominant species or change in the carbon assimilation metabolism as substrate 
change. The biokinetic coefficients are used in the biological growth and substrate 
utilization rate equations, and are accepted for developing the reactor design. 

 
In order to achieve good treatment efficiencies in activated sludge processes, the 

loading rate should not exceed 0.05 kg BOD

5

/kgTS.d. In an activated sludge processes 

used for treating landfill leachate, general operation conditions are as follows: 
 

Operational conditions: 

MLVSS                                  : 5,000 to 10,000 mg/L 
Food/Micro-organism    

: 0.02 to 0.06 per day 

Hydraulic Retention Time 

: 1 to 10 days 

Solids Retention Time   

: 15 to 60 days 

Nutrient requirements      

: BOD

5

: N: P = 100: 3.2: 0.5 

 

The process could obtain 90% to 99% BOD and COD removal and 80% to 99% 

metal removal.  

   

 

 
 
 
 

background image

 19 

Table 2.8 Summary of Biokinetic Coefficient of Activated Sludge Process for Landfill 
Leachate Treatment 
 

S

o

(BOD

5

(mg/L) 

(d

-1

K

(mg/L) 

(mg/mg

k

(d

-1

θ

c

 

(d) 

(

°C) 

Reference 

36,000 

0.75 

200.0 

0.33 

0.0002

6.5 

23 to 25 

Uloth and 
Mavinic, 1977 

15,800* 

0.6 

175.0 

0.40 

0.050 

22 to 24 

Cook and 
Foree, 1974 

0.77 

20.4 

0.39 

0.022 

3.6 

23 to 25 

0.71 

29.5 

0.63 

0.075 

16 

Zapf –Gilje and 
Mavinic, 1981 

0.46 

14.6 

0.50 

0.028 

13,640 

0.29 

11.8 

0.43 

0.008 

7.5 

Graham and 
Mavinic, 1979 

1.16 

81.8 

0.49 

0.009 

1.8 

22 to 23 

1.12 

63.8 

0.51 

0.018 

1.8 

15 

0.51 

34.6 

0.51 

0.006 

4.0 

10 

8,090 

0.34 

34.0 

0.55 

0.002 

5.4 

Wong and 
Mavinic, 1984 

1,000 

4.50 

99.0 

0.59 

0.040 

0.42 

22 to 23 

Lee, 1979 

365 

1.80 

182.0 

0.59 

0.115 

21 to 25 

Palit and 
Qasim, 1977 

3,000 

0.44 

1 to 20

10 

Robinson and 
Marais, 1983 

2,000 

0.46 

180.0 

0.50 

0.100 

2 to 10

25 

Gaudy, et al., 
1986 

Domestic 

Wastewater 

2-10  25-100 

0.4-0.8 

0.025-

0.075 

 - 

 - 

Tchobanoglous, 
et al., 2003 

S

o

 = BOD

5

 (* COD) 

 

k = substrate removal rate   

 

K

s

 = half-velocity constant 

Y = yield coefficient 

 

k

d

 = endogenous decay coefficient   

Θ

c

 = solid retention time 

T = temperature 

 
 
 Keenan, 

et al. (1984) investigated the combined physico-chemical process with 

activated sludge process. It was observed that the reduction in ammonia by stripping and 
neutralization with H

2

SO

4

 and H

3

PO

4

 after that entered to activated sludge process. The 

organic matter in terms of BOD was reduced 99% and the corresponding COD removal 
was 95%. The effluent BOD to COD ratio was 0.16. The reduction in ammonia was 90% 
and heavy metals removal ranged from 27% to 75%. 
 
 Dzombak, 

et al. (1990) had studied the treatment of leachate in an extended aeration 

system. The BOD/COD ratio of the leachate was below 0.1 which is a characteristic of old 
landfill leachate containing mainly refractory organic compounds. Different mean-cell 
residence times from 15 to 60 days were investigated.  It was observed that maximum 
COD removal of 40% could be achieved with mean-cell residence time of 60 days. This 
suggested that leachate from young landfills with organic matter containing high volatile 
acids can be more easily treated with an activated sludge process than old landfill leachate. 
 

Doyle, et al. (2001) performed the sludge characterization studies in the nitrification 

process used for ammonia removal in an “old” landfill leachate. Whilst most researchers 
(Knox, 1985; Robinson and Maris, 1983; Strachan, et al., 2000) reported poor settleability 

background image

 20 

of sludge (possibly due to high ammonia and low BOD: N ratio) in the activated sludge 
treatment of leachate, Doyle, et al. (2001) reported good sludge settling with SVI ranging 
between 20 to 30 mL/g.  A well-settled sludge generally exhibits an SVI of 80 to 150 mL/g. 
This was probably due the presence of a high nitrifying fraction in the sludge. Further, the 
ability of sludge to settle well indicates the enhanced removal efficiencies and hence, 
improved effluent quality.  
 

Sequencing Batch Reactors (SBR) 

  

Sequencing batch reactors (SBR) are commonly used as a biological treatment for 

leachate treatment. Several studies have been conducted to find out the applicability of 
SBR in leachate treatment. Doyle, et al. (2001) conducted a study of high-rate nitrification 
in SBR on a mature leachate obtained from a domestic landfill. The leachate possessed 
high ammonia content with an average concentration 880 mg/L, while the average BOD

5

 

and COD concentrations were 60 and 1,100 mg/L, respectively. The ammonium oxidation 
rates upto 246 mg N/L.h and specific ammonium oxidation rates of 36 mg N/mg VSS.h 
were achieved in this study. A complete ammonia oxidation of the leachate could be 
achieved with a HRT of 5 h. 
 

Hosomi,  et al. (1989) also evaluated SBR for the treatment of leachate containing 

high nitrogen and refractory organic compounds. The advantages of the SBR compared to 
nitrification-denitrification processes that they are less likely to get damaged due to scale 
formation; easy for maintenance; sludge bulking is unlikely; by varying the aerobic and 
anoxic cycles, a wide range of pollutant loads can be effectively treated, and certain non-
biodegradable halogenated organic compounds can also be degraded.  

 

Yalmaz and Ozturk (2001) conducted an investigation on the use of SBR technology 

for the treatment of high ammonia landfill leachate via nitrification-denitrification and 
anaerobic pre-treatment. The study was done in two folds: to evaluate SBR technology for 
the treatment of high ammonia leachate and to investigate the feasibility of using landfill 
leachate as a carbon source for denitrification. The SBR was further tested for the 
treatment of anaerobically pre-treated leachate from an up-flow anaerobic sludge blanket 
reactor (UASB). The SBR achieved a 90 % nitrogen removal when anaerobically pre-
treated leachate was treated while using Ca (CH

3

COO)

 2 

as a carbon source. The study 

revealed that young landfill leachate with a COD/NH

4

-N greater than 10 was also effective 

as a carbon source for denitrification. Although a 2-stage combination biological treatment 
in the form of UASB and SBR were used in the treatment scheme, the effluent emitted did 
not meet discharge standards and required additional post-treatment in the form of 
physical-chemical processes such as reverse osmosis or ozonation. This justifies findings 
by previous researchers who suggest the most effective means of treating landfill leachate 
is a combination of physical-chemical and biological treatment. 
 

Rotating Biological Contactor (RBC) 

  

The biological contactor oxidation process is adopted to treat the organic pollutant in 

the leachate.  Even with a low concentration or remarkable load fluctuation of organic 
pollutant, the stable and effective treatment efficiency could be achieved. During an 
investigation conducted by Siegrist, et al. (1998) to study the nitrogen loss in a nitrifying 
rotating contactor to treat ammonium rich leachate without organic carbon, it was found 

background image

 21 

that extensive loss of nitrogen (up to 70%) could be secured. DOC less than 20 mg/L 
suggested that the heterotrophic denitrification could be excluded. 
 

The nitrification rate reached 3-4 g NH

4

-N/m

2

.d at a pH of 7 to 7.3 in the first two of 

three RBC compartments. It was said that an increasing partial pressure of oxygen and 
increasing ammonium concentration had favoured nitrogen removal over ammonium 
oxidation. The reduction of nitrite in the aerobic biofilm layer close to the surface might 
have been therefore coupled with ammonium oxidation, and probably took place in the 
deeper or temporarily anoxic layer of the biofilm. Henderson, et al. (1997) also found that 
RBC could be effective in treating the methanogenic landfill leachate. 
 

Anaerobic Treatment 

 

The most common anaerobic treatment is the methanogenic degradation where the 

organic matter is completely degraded to mainly methane and carbon dioxide. Anaerobic 
degradation as suggested by Kylefors (1997) follows a sequence where the interaction of 
several different microorganisms performing hydrolysis, fermentation, acetogenesis and 
methanogenesis is required. Anaerobic processes are generally carried out in attached film 
reactors. These reactors are insensitive to variations in loading, can retain biological solids 
irrespective of the waste flow and maintain a sufficiently high solids concentration over an 
extended period. It has been reported that removal efficiencies in anaerobic filters are 
higher than anaerobic digesters maintained at the same hydraulic retention time (Pohland 
and Kim, 1999).

 

 

The main advantages of anaerobic treatment over aerobic treatment are: 
 

1.  The energy requirement is lower since no oxygen is required, thus reducing the 

operational cost.  

2.  Since only 10 to 15 % of organic matter is transformed into biomass:  

•  Low sludge production making the sludge disposal unproblematic. 

•  Low nutrient supplement requirement, which is beneficial for leachate 

treatment which is nutrient deficient. 

•  Biogas production (85-90 %) favouring the energy balance. 

•  Possibility to treat leachate with high organic material concentration without 

dilution as required by the aerobic process, thus reducing the space 
requirements, the size of the plant and capital cost. 

3.  Anaerobic microorganisms seldom enter endogenous phase, which is important for 

the treatment of leachate with variable volume and strength.  

4.  Anaerobic sludge is highly mineralized than aerobic sludge, which increases its value 

as a fertilizer if toxic metals are removed. 

5.  Anaerobic sludge tends to settle more easily than aerobic sludge, where addition of 

flocculants is required. 

  

The main drawbacks of anaerobic systems are: 
 

1.  Working temperature above 30 

°C is required for efficient kinetics. 

2.  Complexity of start-up period and the need for strict control of operating conditions. 
3.  The apparently lower performance of anaerobic methods in elimination of heavy 

metals when compared with aerobic treatment.  

background image

 22 

4.  Need for complementary treatment in order to achieve high purification rates and 

acceptable effluent quality.  

 

Cameron and Koch (1980) experimented anaerobic digestion at temperature from 29 

to 38 

o

C. The initial acclimation of this system were supplemented by adding lime to 

correct pH and phosphorus to maintain BOD:N:P proportion. This process could reduce 
BOD of 65% to 80% and heavy metals of 40% to 85%.  

 

Mendez,  et al. (1989) conducted a leachate treatment from young landfill by using 

anaerobic digestion. The COD removal efficiency was 65% with a HRT of 8 days. 
Furthermore, this study revealed that the COD removal efficiency of leachate from young 
landfill is higher than the leachate from the old landfill, due to the lower percent of 
refractory organic compounds. 
 

Upflow Anaerobic Sludge Blanket Reactor (UASB) 

  

As often pointed out, leachate varies widely in quantity and in composition, from one 

place to another (Kennedy, et al., 1988). Such variability along with other factors make the 
applicability of a method to treat leachate highly dependent on the characteristics of the 
leachate and the tolerance of the method against changes in leachate quality (Henry, 1982). 
 

The UASB reactor has achieved widespread acceptance as a high-rate partial 

treatment process for high organic strength wastewaters throughout the world. This helps 
us to accept UASB as a leachate treatment process.  Blakey, et al. (1992) have studied the 
influence of temperature, supply of nutrient and microorganism composition in the reactor 
treatment efficiency. As a pre-treatment system, high rate anaerobic processes (as UASB) 
have been shown to be efficient in the treatment of municipal landfill leachate having a 
COD higher than 800 mg/L and the BOD/COD ratio higher than 0.3 (Kettunen, 1996). 
Especially, UASB reactors have exhibited superior performance compared to the other 
processes at high volumetric loading rates and with toxic and organic shock loads. 

 

Blakey,  et al. (1992) performed the UASB with the young leachate containing 

BOD/COD ratio of 0.67. The unit was operated at an average loading rate of 11 kg 
COD/m

3

.d with a HRT of 1.8 days. The average removal of COD, BOD, TOC and SS 

were 82%, 85%, 84%, and 90%, respectively. The biogas yield of 496 ml/g COD removed 
could be achieved. When Jans, et al. (1992) investigated UASB at loading rate of 25 kg 
COD/m

3

.d an efficient COD removal could be achieved. 

 

Nitrification and Denitrification Process 

 

The two main difficulties faced by the researchers in biologically treating the 

leachate are: 

1.  The leachate contains high nitrogen concentration with low COD: N ratio (Robinson 

and Maris, 1985) 

2.  The high ammonia concentration causes toxicity and the difficulty which is enhanced 

by phosphorous limitation (Keenan, et al., 1984).  

  

As the high ammonium concentration affects the leachate treatment, nitrification and 

denitrification processes play a significant role in leachate treatment. The ammonia toxicity 
occurs at a concentration of 31 to 49 mg/L (Cheung, et al., 1997). Complete removal of 

background image

 23 

ammonia could only be achieved when the N: BOD

5

 ratio does not exceed 3.6:100. Further, 

when ammonia concentrations exceed 200 mg/L (as N), in the mixed liquor, the sludge 
settling is also adversely affected (Robinson and Maris, 1985). Hence, removal of nitrogen 
and nitrogen compounds from the leachate by a pre-treatment prior to biological treatment 
processes is of prime importance. 
 

Biological nitrification-denitrification is one of the most economical processes for 

nitrogen removal. The successful application of this system is dependent on the microbial 
population, composition, characteristic of the leachate and a variety of physical and 
chemical parameters (Table 2.9). The process essentially consists of oxidation of ammonia 
to nitrates with nitrite as an intermediate compound and finally nitrates to nitrogen gas. 
Biological nitrification is preferred in absence of inhibitory substances which interfere with 
the microbial ammonium oxidation process (Doyle, et al., 2001).  
 
Table 2.9 Operational and Environmental Conditions for Nitrification-Denitrification 
Processes (Kylefors, 1997) 
 

Parameter 

Unit 

Nitrification 

Denitrification 

Substance    
  transformed 

 NH

4

+

 NO

3

-

 

End Product 

 

NO

3

-

 

N

2

 

Intermediate Product 

 

NO

2

-

 NO

2

-

 , N

2

pH 

 

7.5 to 8.6 

6 to 8 

Alkalinity mmol 

of 

HCO

3

-

/mg of N 

Consuming 0.14 

Producing 0.07 

Oxygen mg 

O

2

/L 

> 2 (aerobic) 

< 0.5 (anoxic) 

Organic Material 

mg COD/mg of N 

Phosphorus content 

mg of P/g of N 

> 4 

> 11 

Production of Sludge 

g/g of N 

0.17 

0.45 

Temperature 

A 10 

°C increase gives about 2 times specific rate 

 

Denitrification processes occur generally in anaerobic activated sludge, anaerobic 

filter and anaerobic lagoon. Methanol is usually added as an organic carbon source prior to 
denitrification; however, dosing should be monitored to prevent hydrogen sulphide 
formation and its inhibition (Reeves, 1972). Endogenous respiration is not frequently used 
as it results in weak kinetics and requires larger volumes. 

 

In an extensive study conducted by Illies (1999) to treat high ammonia leachate with 

a four stage nitrification-denitrification process which is biological nutrient removal, an 
initial ammonia concentration of 200 mg/L was step-wise increased in an attempt to 
improve process ability to handle high ammonia concentrations. The initial trial resulted in 
severe nitrification inhibition due to insufficient acclimation after increment of 300 mg/L 
ammonia at each stage upto a final ammonia concentration of 2,300 mg/L. Further, 
methanol was added in the denitrification zone simultaneously with increase in ammonia 
concentration. This led to excess of methanol leading to inhibition of denitrification. When 
the system was operated at low HRT of 1.5-1.7 h for denitrification and 3-3.4 h for 
nitrification with an SRT of 20 days, removal efficiencies were found to be greater than 
90%.  
 

Bae, et al. (1997) proposed a treatment scheme consisting of an anaerobic filter (pall 

rings media) and 2-stage activated sludge process for the removal of ammonia and then 

background image

 24 

using Fenton’s treatment process which is chemical treatment using strong oxidizing agent 
like H

2

O

2

, FeSO

and post-AS for COD reduction. The system was able to completely 

nitrify the ammonia nitrogen with an initial concentration between 1,400 and 1,800 mg/L. 
COD was reduced from 4,000-7,000 mg/L in the raw leachate to 150-200 mg/L in the 
effluent. The nitrification process seemed to suggest nitrification via nitrite than nitrate 
could be more advantageous due to high reaction rate, low organic requirements, low 
sludge production and low oxygen requirements. The results were in accordance with the 
hypothesis prescribed by other researchers (Turk and Mavinic, 1989; Abeling and Seyfried, 
1992).

 

 

Welander, et al. (1998) investigated the suspended carrier biofilm process (SCBP) in 

the biological removal of nitrogen and organic matter from landfill leachate. In the system, 
COD removal of 20 % with maximum volumetric nitrification and denitrification rates of 
24 g N/m

3

.h and 55 g N/m

3

.h, respectively could be achieved. Total nitrogen removal was 

found to be 90 %. The study by Wetlander, et al. (1998) revealed that nitrification rates 
could be improved by an attached growth on plastic carrier media. However, this does not 
imply that nitrification would proportionally increase with an increase in carrier surface 
area since effective mass transfer of oxygen to the biofilm and choice of media also 
governs the process. 
 

In a study done by Imai, et al. (1993), the feasibility of the simultaneous removal of 

refractory organic compounds and nitrogen in an “old” landfill leachate was investigated 
by microorganisms attached activated carbon fluidised bed process (MAACFB).  The 
study was conducted in anaerobic and aerobic fluidised beds arranged in series with a 
recycling of effluent from the aerobic to the anaerobic reactors for the removal of nitrogen 
by denitrification. The leachate source was obtained from a co-disposal site of municipal 
and industrial waste typical of “old” leachate with a biodegradability of less than 0.1 and 
total nitrogen content of 214 mg/L. The performance of the system indicated a 60 % 
removal of refractory organic compounds and a 70 % removal of total nitrogen. 
 

The review of biological processes highlighted the large space, energy and volume 

requirements necessary for sequence batch reactors, however their advantage are immunity 
to shock loading and minimal operator input. Whilst biological processes are able to 
remove readily biodegradable organics, the non-biodegradable matter remains untreated. 
Biological nitrification on the other hand, is generally difficult to achieve in landfill 
leachate due to large amounts of inhibitory substances present in the leachate. Table 2.10 
and Table 2.11 present a comparison of different studies with aerobic and anaerobic 
treatments, respectively. The majority of physical processes are effective in ammonia 
stripping but have minimal effect on removal of organics. 

 

 
2.8.2  Physical Treatment 
 

Physical processes include activated carbon adsorption, pressure-driven membrane 

filtration processes, and evaporation. These processes generally cannot be applied 
successfully to remove the organic material from raw leachate, therefore Pohland and 
Harper (1985) suggested that reverse osmosis, activated carbon (PAC and GAC) and ion 
exchange could be more successful when used as a post-treatment for landfill leachate after 
biological treatment. However, although each process is coupled with biological system, 
they have a limited application and therefore they can be even more effective when 
physico-chemical treatment is used as pre and post treatment for biological systems. 

background image

 25 

Table 2.10 Treatment Efficiencies of Different Aerobic Biological Treatment Systems 
 

Processes 

 

HRT 

(d) 

Temperature 

(

O

C) 

COD 

Loading 

(kg/m

3

-d) 

Initial COD 

(mg/L) 

pH 

 

BOD/COD 

Ratio 

COD 

Removal 

(%) 

Initial NH

4

-N 

(mg/L) 

NH

4

-H 

Removal 

(%) 

Reference 

 

1-5 

23-25 

0.5-1.7 

3,000-9,000 

6.0-8.0 

0.5-0.8 

30-90 

Boyle and Ham, 1974 

10 

22 

1.66 

16,000 

7.6-8.4 

0.4 

97 

TN 280 

92-95 

Cook and Foree, 1974 

 
Fill-and-draw batch 
 
 
 

22 

3.32 

16,000 

8.0 

0.4 

47 

TN 280 

58 

Cook and Foree, 1974 

1 20  0.1 100-150 

-  -  36-38 

100-330 99 

Hosomi, 

et al., 1989 

0.5 

 

25 

 

 

5,295 

 

9.1 

 

0.4-0.5 

 

60-68 

 

872 

 

 

Dollerer and Wilderer, 
1996 

3.2 

 

 

0.69 

 

2,200 

 

6.8-7.1 

 

0.46 

 

95 

 

35 

 

>99 

 

Zaloum and Abbott, 
1997 

20 

 

 

0.62 

 

12,400 

 

 

0.4 

 

91 

 

179 

 

>99 

 

Zaloum and Abbott, 
1997 

SBR 
 
 
 
 
 

8.5 

20-25 

1,690 

0.05 

616 

>99 

Fisher and Fell, 1999 

34 

0-20 

 

<1.0 

 

5,600 

 

 

0.7 

 

97 

 

130 

 

93 

 

Robinson and 
Grantham, 1988 

Aerated lagoon 
 
 

- - 

-  34,000 

0.6  99  600  99 

Robinson, 

et al., 1992 

20 

 

10 

 

1.2 

 

24,000 

 

6.0-7.5 

 

0.5 

 

98 

 

790 

 

>99 

 

Robinson and Maris, 
1985 

20 

 

10 

 

0.06 

 

1,200 

 

 

0.2 

 

41 

 

370 

 

90 

 

Robinson and Maris, 
1985 

0.3 

250-1,200 

85-90 

Schuk and James, 1986 

Activated sludge 
 
 
 
 

31 15-18 

0.4 

12,500  -  0.6  93-96 

- Avezzu, 

et al., 1992 

RBC 2.9 

2.8 

9,300 

0.7 

86 

Vicevic, 

et al., 1992 

 
 

background image

 26 

Table 2.11 Treatment Efficiencies of Different Anaerobic Biological Treatment Systems  
 

Processes 

 

HRT 

(d) 

Temperature 

(

O

C) 

COD Loading 

(kg/m

3

-d) 

Initial COD 

(mg/L) 

pH 

 

BOD/COD 

Ratio 

COD Removal 

(%) 

Reference 

 

12.5 

15 

0.7 

8,400 

6.9-8.1 

0.7 

73 

Boyle and Ham, 1974 

5-20 

23 

0.4-2.2 

2,700-12,000 

6.9-8.1 

0.6-0.8 

87-96 

Boyle and Ham, 1974 

12.5 

10 

0.7 

8,300 

6.9-8.1 

0.8 

22 

Boyle and Ham, 1974 

Anaerobic digestion 
 
 
 
 

5-20 

29-38 

0.2-1.3 

20,000-30,000 

5.0-5.3 

0.5 

65-80 

Cameron and Koch, 1980 

Anaerobic pond 

86 

20-25 

6,280 

6.6 

0.7-0.8 

95 

Bull, et al., 1983 

2-4 21-25 1.5-2.9  13,780 

7.3-7.7 

0.7  68-95 

Henry, 

et al., 1987 

0.5-1.0 21-25  1.3-3.1 

3,750  7.0-7.2 0.3 

60-95 

Henry, 

et al., 1987 

0.5-1.0 21-25  1.4-2.7 

1,870  7.1-7.9 - 

88-90 

Henry, et al., 1987 

Anaerobic filter 
 
 
 
 

17 37  3.8  9,000 - 

0.7 83 

Wu, 

et al., 1988 

0.3-0.5 33-35  15-25 25,000-35,000 

7.4-7.8 - 

80-85 

Jans, 

et al., 1992 

1.0-3.2 28-32  3.6-20 11,500-33,400 -  0.7 

66-92 

Blakey, 

et al., 1992 

0.6 15-20  5-15 2,800-13,000 

-  -  73-93 

Garcia, 

et al., 1996 

UASB 
 
 
 
 

0.5-1.0 

1.2-19.7 

4,800-9,840 

0.86 

77-91 

Kennedy and Lentz, 2000 

USB/AF 

2.5-5.0 

30 

1.3-2.5 

17,000-20,000 

80-97 

Nedwell and Reynolds, 1996 

AnSBR 

1.5-10.0 

35 

0.4-9.4 

3,800-15,900 

7.4-8.0 

0.54-0.67 

65-85 

Timur and Ozturk, 1999 

    Note: USB/AF = Upflow hybrid sludge bed/fixed bed anaerobic system 
              AnSBR = Anaerobic sequencing batch reactors 

background image

 27 

Activated Carbon Adsorption  

 

Granular activated carbon in combination with biological pretreatment is the leading 

technology for the treatment of landfill leachate for the removal of chemical oxygen 
demand (COD), adsorbable organic halogens (AOX) and other toxic substances. More than 
130 different types of organics have been identified on spent carbon from leachate 
treatment plants. Granular activated carbon is used to remove AOX and COD, both of 
which are not primary focus of biological treatment systems and therefore, the effluent 
quality may be found above discharge consent levels from such treatment systems. With 
particularly dilute leachate, it may be operated with a plate separator or pressurized sand 
filter removing suspended solids from the flow, in order to ensure that the carbon filter is 
not blocked with solids. It is necessary to ensure that there are no substances in the 
leachate which will damage the carbon prior to selecting such a system. 
 

When Fettig (1996) studied the treatment of landfill leachate by preozonation and 

adsorption in activated carbon columns, the data evaluation revealed that degradation took 
place inside the activated carbon beds. Therefore, the total removal efficiency of ozonated 
leachate in activated carbon columns was found to be higher than the removal efficiency 
due to adsorption processes. A review of physical-chemical processes done by Qasim and 
Chiang (1994) indicated that adsorption by activated carbon was more effective in organic 
removal from raw leachate than chemical precipitation with COD removal efficiencies of 
59 to 94 %. The humic substances remains unaffected by activated carbon treatment while, 
1,000 MW fluvic substances could be easily removed by activated carbon. 
 

Membrane Filtration 

 
 

A membrane is defined as a material that forms a thin wall capable of selectively 

resisting the transfer of different constituents of a fluid and thus affecting separation of the 
constituents. The principle objective of membrane manufacture is to produce a material of 
reasonable mechanical strength that can maintain a high throughput of a desired permeate 
with a high degree of selectivity (Visvanathan, et al., 2000). The optimal physical structure 
of the membrane material is based on a thin layer of material with a narrow range of pore 
size and a high surface porosity. This concept is extended to include the separation of 
dissolved solutes in liquid streams and the separation of gas mixtures for membrane 
filtration. 

 
The classification of membrane separation processes are based on particle and 

molecular size. The processes such as reverse osmosis (RO), nanofiltration (NF), 
ultrafiltration (UF) and microfiltration (MF) do not generally require the addition of 
aggressive chemicals and can be operated at ambient temperature making these processes 
both an environmentally and economically attractive alternative to the conventional 
operating units. Table 2.12 summarizes the various membrane processes and its separation 
potential. RO membranes can remove more than 99 % of organic macromolecules and 
colloids from feed-water and up to 99 % of the inorganic ions.  
 
 
 
 
 
 

background image

 28 

Table 2.12 Membrane Processes (Rautenbach and Albrecht, 1989) 
 

Membrane 

Processes 

Mixtures Separated 

Driving Force 

Preferably Permeating 

Component 

Reverse 
Osmosis 

Aqueous low 
molecular mass 
solutions, Aqueous 
organic solutions 

Pressure difference  
(

≤ 100 bar) 

Solvent 

Ultrafiltration 

Macromolecular 
solutions, 
emulsions 

Pressure difference  
(

≤ 10 bar) 

Solvent 

Microfiltration  
(cross flow) 

Suspensions, 
emulsions 

Pressure difference  
(

≤ 5 bar) 

Continuous phase 

Gas Permeation  Gas mixtures, 

water-vapour gas 
mixtures 

Pressure difference  
(

≤ 80 bar) 

Preferably permeating 
component 

Pervaporation 

Organic mixtures, 
aqueous organic 
mixtures 

Permeate side: Ratio 
of partial pressure to 
saturation pressure 

Preferably permeating 
component 

 

Due to high rejection ability, reverse osmosis membranes retain both organic and 

inorganic contaminants dissolved in water with rejection rates of 98 to 99 % thus being 
useful for purifying of liquid waste such as leachate. Permeate generated from the reverse 
osmosis unit is low in inorganic and organic contaminants which meet the discharge 
standards. Reverse osmosis technology was reported as the most effective in COD removal 
among different physical-chemical processes evaluated. The removal efficiencies are 
dependent on the choice of membrane material. Chian and DeWalle (1976) reported 50 to 
70 % removal of TOC with cellulose acetate membranes while the use of polyethylamine 
membranes increased efficiency to 88 %.  
 

Reverse osmosis further offers the advantage of almost complete total solid removal 

and is effective as either a pre-treatment or a polishing treatment for a biologically or ion 
exchange treated effluent.  
 

Membrane filtration is less effective in treating young or acidogenic leachate. The 

efficiency of different membrane technology in treating methanogenic leachate is 
presented in Table 2.13. Although nanofiltration and reverse osmosis are quite effective in 
leachate treatment in terms of organic, inorganic, nitrogen and AOX removal, the 
disadvantage of membrane treatment system is its susceptibility to fouling and short 
lifetime. 

 

Table 2.13 Removal Efficiency of Moderate to High Concentrations of Pollutants Using 
Nanofiltration, Ultrafiltration and Reverse Osmosis (Kylefors, 1997) 
 

Parameter 

Reverse Osmosis 

Removal (%) 

Nanofiltration 

Removal (%) 

Ultrafiltration 

Removal (%) 

COD 

95 to 99 

80 to 90 

25 to 60 

NH

4

(N), pH = 6.5 

90 to 98 

80 to 90 

< 20 

AOX 

95 to 99 

70 to 90 

30 to 60 

Chloride 

90 to 99 

40 to 90 

< 40 

background image

 29 

 

Colloidal material as well as metal precipitation can cause fouling and clogging in 

the membranes. Fouling leads to an increase in osmotic pressure and hydraulic resistance, 
thus increasing the energy consumption.  In order to minimize the fouling effect, the pH 
can be adjusted from 4 to 7.5.  
 

Since membranes cannot retain volatile fatty acids, acidogenic leachate is poorly 

treated using membrane systems. A coupling of a membrane and activated sludge process 
to form a membrane bioreactor may be more viable as the membrane ensures total solids 
retention. For moderate to strong methanogenic leachate, a good removal of several 
substances, including metals can be achieved using bioreactors. Hence, a combination of 
an activated sludge process with a membrane system, the membrane bioreactor technology 
can achieve high treatment efficiency with an excellent effluent quality. 
 

The application of reverse osmosis for large-scale application had been done in 

Germany. The process train is as shown in Figure 2.6. The reverse osmosis system had a 
capacity of 36m

3

/h and had been in operation for long with a change of a membrane after 8 

years (Peters, 1997). Operational pressure was ranged from 36 to 60 bars depending on 
feed characteristics. Membrane filtration took place at ambient temperature and at a 
permeate flux of 15 L/m

2

.h. The performance of the plant is illustrated in Table 2.14. 

 

When a reverse osmosis in Germany was operated at a capacity of 1.8m

3

/h, a salt 

rejection of 98 % and COD removal of 99 % could be achieved. The membrane was 
changed after 3 years of operation due to the flux reduction. The illustrations indicated that 
reverse osmosis is effective in landfill leachate treatment provided that the leachate 
characteristic is considered and the membrane module modified adapted to meet the design 
criteria (Peters, 1997).   
  
 

 
 
 

Figure 2.6 Treatment of Landfill Leacahte with Two Stage Reverse Osmosis  

           (Peters, 1997) 
 

RO Permeate II 

Reverse Osmosis I 

Reverse Osmosis II 

Leachate 

Solidification  

of Residue 

RO Permeate I 

Concentrate I 

Binding 

Reagents 

Stabilized Materials

Concentrate 

Concentrate II 

(Recirculation to RO I) 

background image

 30 

Table 2.14 Typical Reverse Osmosis Plant Performance for Leachate Purification, 
Germany (Peters, 1997). 
 

Parameter 

Unit 

Leachate 

RO 

Permeate I 

RO 

Permeate II 

Rejection 

(%) 

pH 

7.7 

6.8 

6.6 

 

Electrical Conductivity 

µS/cm 

17,250 

382 

20 

99.9 

COD 

mg O

2

/L 

1,797 

< 15 

< 15 

> 99.2 

Ammonium 

mg/L 

366 

9.8 

0.66 

99.9 

Chloride 

mg/L 

2,830 

48.4 

1.9 

99.9 

Sodium 

mg/L 

4,180 

55.9 

2.5 

99.9 

Heavy Metals 

mg/L 

0.25 

< 0.005 

< 0.005 

> 98 

 

Evaporation 

 

As cited by Ehrig (1998), through evaporation, leachate can be separated into a clear 

liquid and a solid phase bearing the pollutants. Practically, this is difficult as the solid 
phase or the condensate laden with volatile or chlorinated organic compounds and 
ammonia requires further treatment. Concentration and nitrogen recovery with the 
evaporation technology is possible with evaporation technology. Physical-
chemical leachate treatment plants consist of many technical points and equipments which 
have to be taken into account in the maintenance of the plant. Evaporation is a simpler 
technology with easy application and less complicated technical difficulties. Evaporation is 
also a cost-effective option. 

 

But, the problems concerned with evaporation of raw leachate as cited by Cossu, et 

al. (1992) are: 

1.  Formation of foam due to high organic content 
2.  Encrustation and corrosion, causing equipment damage 
3.  Fouling on the heat-transfer surface 
4.  Need for post-treatment for removal of ammonium and halogenated organic material 
5.  High energy costs. 

  
2.8.3  Chemical Treatment

 

 

A wide scope of chemical treatment is available for leachate treatment. The 

advantages of chemical treatment methods in general include immediate start-up, easy 
automation, insensitivity to temperature changes and simplicity of plant and material 
requirements. However, the advantages are outweighed by the disadvantages of large 
quantities of sludge generated due to the addition of flocculants and chemicals with high 
running costs. Thus, chemical and physical treatment is merely used as pre or post-
treatment of leachate to complement biological processes. The various chemical treatment 
processes used in leachate treatment are coagulation, precipitation, oxidation, stripping, etc.  
 

Coagulation and Precipitation 

 

Coagulation/precipitation involves the addition of chemicals to alter the physical 

state of dissolved and suspended solids and facilitate removal by sedimentation. This 
treatment is effective on leachate with high molecular weight organic material such as 
fulvic and humic acid. Since these components are generally difficult to degrade 

background image

 31 

biologically, physical-chemical processes prove beneficial with approximately 60 % 
reduction in COD for methanogenic leachate.  
 

Lime as a precipitating agent can reduce colour upto 85% and remove metals through 

precipitation. Chian and DeWalle (1977) and Ho, et al. (1974) reported that precipitation 
using lime could remove organic matter with molecular weight greater than 50,000 Da. 
This particular fraction is present in a low concentration in young landfills and absent in 
older landfills. Therefore, lime treatment is most effective in medium-age landfills. Whilst 
easily biodegradable fatty acids are however impervious to coagulation/precipitation and 
hence should be treated biologically.  

 

The concurrent COD and phosphorus removal via lime precipitation is independent 

of air flow rate. The change in colour of the raw leachate from dark brown to pale yellow 
after precipitation indicated the removal of the organic fractions that contributed to the 
colour (humic substances). Chian and DeWalle (1976) mentioned that the minimal 
reduction in COD (20 %) could be attributed to lime precipitation, as the molecular weight 
greater than 50,000 Da contributing to some amount of COD fraction was removed. 
However, an increase in lime dosage did not prompt a concomitant increase in COD 
precipitation. Phosphorus was removed by calcium hydroxide precipitation.  

 

Chemical Oxidation  

 

Chemical oxidation technologies are useful in the oxidative degradation or 

transformation of a wide range of pollutants present in drinking water, groundwater and 
wastewater treatment (Venkatadri and Peters, 1993). Generally, chemical oxidation 
processes are incorporated into treatment sequences to treat constituents of wastewaters 
that are resistant to biodegradation or create toxicity in biological reactors. Chemical 
oxidation process is widely used in leachate treatment. A variety of chemical oxidants are 
used for leachate treatment. The various oxidants used for leachate treatment are hydrogen 
peroxide, ozone, chlorine, chlorine dioxide, hypochlorite, UV-radiation and wet oxidation. 
Based on the oxidative potentials, hydroxyl radicals exhibit a stronger oxidation behavior 
than ozone. Since, oxidation processes are energy intensive and expensive, their 
application is limited. Further, as oxidation processes are dependent on the stoichiometry, a 
large amount of oxygen is required for higher organic concentrations (Webber and Smith, 
1986). Chlorine, chlorine dioxide, hypochlorite compounds are not used for oxidation due 
to their toxicity. 
 

(a) Hydrogen Peroxide 
 
Without an oxygen supplement, the oxidizing potential of hydrogen peroxide is 

insufficient to reduce the content of organic compounds, especially humic substances and 
facilitate degradation. However, hydrogen peroxide in the presence of a suitable catalyst, 
usually iron salts or UV-radiation (Steensen, 1997), can form hydroxyl radicals, which 
have a greater oxidation potential than hydrogen peroxide or ozone individually. 
According to Steensen (1993), the economic feasibility of adopting hydrogen peroxide as a 
chemical oxidation option is poor as 120 to 250 kWh/kg COD removed is required.  
 
 
 
 

background image

 32 

(b) UV-Radiation 
 
UV-radiation is generally coupled with hydrogen peroxide or ozone to form an 

oxidation complex. UV oxidize only certain organic compounds present in leachate and is 
a good disinfectant. When decomposition of dioxins in a landfill by advanced oxidation 
processes were studied, O

3

/H

2

O

2

 and UV/O

3

/H

2

O

2

 processes were tested to evaluate their 

performances in decomposing dioxins present in a landfill leachate. The data suggested 
that the UV/O

3

/H

2

O

2

 process had better removal efficiency of total dioxins than O

3

/H

2

O

2

 

process in terms of toxicity (Sota, et al., 1999). 

 

(c) Ozonation 
 
The chemical oxidation with ozone is an innovative technology for the treatment of 

effluents and leachate that are highly contaminated with organic chemicals because of its 
capability to completely convert the organic contaminants to carbon dioxide. 
 

Ozone due to its strong oxidizing ability is effective and practical as a pre-treatment 

to remove refractory species and as a polishing step to treat organic or increase the 
biodegradability of refractory compounds. The oxidation potential of ozone is sufficient for 
the direct degradation of organic substances. The oxidation of organic compounds by 
ozone is a zero order reaction, i.e. the reaction rate is constant until about 20 % of the 
initial amount is left (Kylefors, 1997).  
 

Bjorkman and Mavinic (1977) conducted an extensive study of physio-chemical 

treatment of landfill leachate. The study included the use of lime, alum, ozone and their 
various combinations for the treatment of municipal solid waste. In the study, after treating 
the leachate with ozone, the leachate was re-circulated in an attempt to improve effluent 
degradation. It was found that counter-current re-circulation minimized the foaming 
problem experienced in the treatment process. However, it was concluded with ozone 
concentrations above 100 mg/L was effective in marginally reducing COD present in the 
leachate. 
 

Gierlich and Kollbach (1998) reported that ozone was effective in reducing 80 % 

ammonia. It was also suggested that ozone treatment was more effective and economical if 
biological treatment was adopted as a pretreatment. 

 
Sludge disintegration has been commonly used as a pretreatment for sludge digestion. 

The digested sludge has the advantage of controlling and reducing sludge bulking in 
conventional activated sludge processes and thus providing an internal carbon source for 
biological nutrient removal. However, the feasibility of using ozone to chemically 
oxygenate sludge to provide an internal carbon source for denitrification processes had not 
yet been investigated. This was the research basis for a study conducted by Ahn, et al
(2001). In the study, the ozonated sludge resulted in a sludge mass reduction and 
improvement in the settleability of the sludge. The effect of sludge ozonation was 
determined in terms of either mineralization or solubilization and changes in residual solid 
characteristics. Both the solubilization and mineralization increases with increase in ozone 
dosage. 
 
 

 

background image

 33 

Ammonia Stripping  
 
Air stripping of ammonia involves passage of large quantities of air over the exposed 

surface of the leachate, thus causing the partial pressure of the ammonia gas within the 
water to drive the ammonia from the liquid to the gas phase. Ammonia stripping can also 
be undertaken by water falling through a flow of air as in stripping towers or by diffusion 
of air through water in the form of bubbles. Stripping towers are more efficient since there 
is better contact between the gas and liquid phases when dispersion of liquid takes place in 
the form of fine droplets. Since, ammonia stripping is mass transfer controlled, the surface 
area of the liquid exposed must be maximised. This can be achieved by creating fine 
droplets with the help of diffusers or sprayers. The process is further subject to careful pH 
control and involves the mass transfer of volatile contaminants from water to air.  
 

The formation of free ammonia is favoured when the pH is above 7. At pH greater 

than 10, over 85 % of ammonia present may be liberated as gas through agitation in the 
presence of air (Reeves, 1972). Ammonium hydroxide (NH

4

OH) is formed as an 

intermediate at pH between 10 and 11 in the reaction. The bubbling of air through 
ammonium hydroxide solutions results in the freeing of ammonia gas. This process is 
subject to temperature and solubility interferences. Since ammonia is highly soluble in 
water, solubility increases at low ambient temperatures. 
 

To review the effectiveness of ammonia stripping as a pre-treatment option for 

landfill leachate, Cheung, et al. (1997) investigated air flow rate and pH as critical 
parameters for the optimisation of ammonia stripping in a stirred tank.  In the study, to 
evaluate the effective pH, air flow rate of 0, 1, 5 mL/min and lime dosage of 0-10,000 
mg/L was varied.  The study revealed an enhanced ammonia removal (86-93 %) could be 
achieved at air flow rate of 5 mL/min and pH greater than 11. It was realized that 
effectiveness of the process was also dependent on area (A): volume (V) ratio of the tank 
and leachate quality. The efficiencies in previous studies by other researchers were 40 to 
53 % for A: V = 23 m

-1

 and 19 % for A: V = 1.8 m

-1

 (Cheung, et al., 1997). This indicated 

that the mass transfer governed the mechanism for ammonia stripping and it was further 
revealed that ammonia desorption into the air bubbles was less significant than the air-
water interfacial area. The provision of air to the system promotes air bubble formation and 
turbulence at the air-water interface, which aids in increasing the surface area for ammonia 
removal. Thus, an indefinite increase in air flow rate could greatly enhance ammonia 
stripping efficiency over a short detention time. The practicality of this approach depends 
on the power mixer efficiency and mass transfer rate, which should be optimised to render 
the process cost-effective. Further, ammonia stripping has the advantage of precipitating 
organics and heavy metals present in the leachate.  
 
 

There has been a plenty number of investigations performed on the physico-chemical 

treatments to investigate their potential in treating leachate. A comparison of different 
studies with physico-chemical treatments is presented in Table 2.15. 
 
2.8.4  Natural Leachate Treatment Systems

 

 

Natural leachate treatment is distinguished from conventional systems based on the 

source of energy that predominates in both the systems. In conventional systems, forced 
aeration, mechanical mixing and chemical addition are input for the pollutant degradation. 
Natural systems however, utilize renewable energy sources such as solar radiation or wind.  

background image

 34 

Table 2.15 Treatment Efficiencies of Different Physico-chemical Treatment Systems 
 

Processes 

 

Detention 

Time 

Initial COD 

(mg/L) 

Initial NH

3

 

(mg/L) 

COD 

Removal 

(%) 

NH

3

 

Removal 

(%) 

Reference 

 

Chemical precipitation 

 

 

 

 

 

 

 - Alum 

800-1,500 

137-330 

35 

Diamadopoulos, 1994 

 - FeCl

3

 - 

800-1,500 

137-330 

56 

Diamadopoulos, 

1994 

 - Lime 

14,900 

13 

Cook and Foree, 1974 

  

550 

10-25 

Graham, 1981 

 - 

Magnesium ammonium 

phosphate

 

7 d 

13,600 

2,170-2,360 

80 

90 

Kabdasli, et al., 2000 

Chemical oxidation 

 

 

 

 

 

 

 - Electrochemical 

4 h 

4,100-5,000 2,600 

92 

100 Chiang, 

et al., 1995 

  

 

1,200 

380 

 

 

Cossu, et al., 1998 

 - H

2

O

2

 + Fe(II) 

1,150 

70 

Kim, et al., 1997 

  

30 min 

1,940 

151 

70 

81 

Lin and Chang, 2000 

Air stripping 

24 h 

800-1,500 

137-330 

95 

Diamadopoulos, 1994 

  

24 h 

448-557 

556-705 

30-48 

86-93 

Cheung, et al., 1997 

  

17 h 

1,210-1,940 

25 

85 

Ozturk, et al., 1999 

  

24 h 

2,170-2,360 

26 

85 

Kabdasli, et al., 2000 

  

24 h 

240 

150 

89 

Marttinen, et al., 2002 

Carbon adsorption 

 

 

 

 

 

 

 - Powder activated carbon 

800-1,500 

137-330 

70 

Diamadopoulos, 1994 

  

742 

43 

Albers and 
Kruckeberg, 1992 

 - MAACFB 

81-157 * 

214 

60 

70 

Imai, et al., 1993 

 - BACFB 

1-4 d 

81-157 * 

42-58 

Imai, et al., 1995 

Reverse Osmosis 

- 1,300  -  >99 - 

Jans, 

et al., 1992 

  

1,000-1,500 

<10 

>99 

Weber and Holz, 1992 

  

1,800 

366 

>99 

>99 

Peters, 1997 

  

1,300 

1.9 

>99 

Baumgarten and 
Seyfried, 1996 

Note: * Dissolved organic carbon (DOC) 
            MAACFB = Microorganism-attached activated carbon fluidized bed process 
            BACFB = Biological activated carbon fluidized bed process 

 
 
 

background image

 35 

These systems are land intensive whilst conventional systems are energy intensive. Typical 
natural systems used for landfill leachate treatment include wetlands, leachate re-
circulation and aquatic systems. 

 

Leachate Re-circulation 

 

Moisture addition by means of rain infiltration and leachate recirculation is critical to 

the stabilization of landfill waste, enhancement of gas production, improvement of leachate 
quality, reducing long-term environmental consequences and liability of waste storage and 
improving economic viability of waste storage. The landfill effectively acts as an 
uncontrolled anaerobic filter and promotes methanogenic conditions for the enhancement 
of organic degradation (Knox, 1985; Strachan, et al., 2000).  
 

The in situ treatment of leachate by recycling the leachate to the landfill reduces the 

time required for biological stabilization of the readily biodegradable leachate constituents 
and increases the rate of biostablization of the leachate. Re-circulated leachate reduces the 
stabilization time from 15 to 20 years to 2 to 3 years (Pohland and Harper, 1985). It can be 
suggested that by managing the moisture content within the landfill, the rate and 
characteristics of the leachate generated can be controlled by diluting the inhibitory and 
refractory compounds. Further, seed, nutrients and buffers can be added to supplement the 
biological activity within the landfill and thus, create an engineered bioreactor in the 
landfill. Whilst this is effective in removing the organic constituents in the leachate, the 
landfill bioreactor has been demonstrated as being ineffective in treating elevated ammonia 
concentrations.  

 

 

Pohland (1972, 1975), Leckie, et al. (1975, 1979) and Pohland, et al. (1990), 

performed leachate recirculation studies. The results indicated a rapid decline in COD due 
to the active development of anaerobic methane forming bacteria in the fill, which was 
enhanced by recirculation of leachate and seeding with municipal sewage sludge. The 
COD reduction showed a similar trend as reduction in BOD, TOC, VFA, phosphate, 
ammonia-nitrogen and TDS. 
 

Reed Beds

 

 

A reed bed system (Root zone treatment) can be designed to treat leachate. The 

wastewater to be treated in root zone treatment passes through the rhizomes of the common 
reed in a shallow contained bed of permeable medium. The rhizomes introduce oxygen 
into the bed and as effluent percolates through it; microbial communities become 
established at the roots and degrade contaminants. Nutrients such as nitrogen and 
phosphorus may also be removed directly as the reeds utilise them for growth. Reed beds 
cannot be used as a primary treatment for leachate since they are poor at removing 
ammonia even from a sewage having a low concentration of 30 mg/L. Further, the 
accumulation of heavy metals within the bed may affect rhizome growth and bed 
permeability. Reed beds are therefore generally used as a polishing step for leachate 
treatment (Robinson, et al., 1992).  
 
2.8.5  Co-Treatment with Municipal Wastewater  
 

Current leachate treatment practice includes discharge of leachate into municipal 

wastewater (MWW) drains followed by the treatment of both domestic wastewater and 

background image

 36 

leachate in municipal wastewater treatment plants. A combined treatment may provide a 
better effluent quality as a result of the maintenance of a more heterogeneous population, 
increased availability of nutrient and possible dilution of potential inhibitors. Another 
advantage of co-treatment of leachate with domestic sewage is that leachate contains 
excess of nitrogen while sewage contains excess of phosphorus which eliminates the need 
for addition of nutrients. However, the main disadvantage is the high concentrations of 
organic and inorganic components contributed by both young and old leachate.  
 

To review the of co-treatment of leachate in MWW plants, Qasim and Chiang (1994) 

summarized research conducted by various researchers (Chian and DeWalle, 1977; Henry, 
1985; Raina and Mavinic, 1985). From the review, it was evident that a disagreement arose 
as to whether this option was viable and under what conditions. Whilst Raina and Mavinic 
(1985) successfully treated leachate-MWW combinations of 20 to 40 %, Henry (1985), 
Chian and DeWalle (1977) and others reported poor performance in the co-treatment for 
leachate to MWW a ratio of less as 10 %. Since, there are contradicting results from 
various researchers, it is unknown whether this treatment option is suitable under practical 
application. Although BOD

5

, COD and heavy metal reduction is well established, the 

relative proportions of leachate effectively treated is effected by ammonia conversions, 
temperature, sludge production, foaming, poor solids settleability, heavy metal 
accumulation and precipitate formation.  
 
2.9   Combined Treatment Facility 
 

A single treatment technology is not efficient in the leachate treatment due to the 

complexity involved in treating leachate having a varied composition and characteristic. 
Leachate treatment entails the integration of several treatment processes. The coupling of 
units for the development of treatment sequences should be modular to allow maximum 
flexibility in order to vary the order of arrangement and for addition/removal of unit 
operations. This effectively creates different treatment lines and thus better adapted to the 
changing qualitative conditions of the leachate (Qasim and Chiang, 1994; Bressi and 
Favali, 1997).  

 
Physical-chemical treatment processes for leachate from young landfills are not as 

effective as biological processes, whereas they are extremely efficient for stabilized 
leachate. COD/TOC and BOD/COD ratios, absolute COD concentration and age of the 
landfill are necessary determinants in the leachate characteristics for selection of 
appropriate treatment system. In treating leachate, the treatment sequence should be able to 
meet either the standards for discharge in receiving water bodies or an acceptable limit for 
discharge into water treatment works. To review the treatment sequences prior to 
development of optimum treatment sequence, few treatment combinations have been 
reviewed. 

 

2.9.1  Biological Treatment and Reverse Osmosis 
 

A treatment sequence that is capable of removing mineralized material should 

include anaerobic digestion, suspended growth biological waste treatment, partial softening, 
filtration and reverse osmosis (RO). The anaerobic digester stabilizes the waste while the 
aeration system degrades the biological matter.  The effluent could be polished in a gravity 
filter and demineralised in a RO unit, thus achieving an effluent devoid of dissolved salts 
and low in organics. The process train is as shown in Figure 2.7(a). With increase in age, 

background image

 37 

the biological treatment can be replaced by coagulation precipitation process followed by 
re-carbonation, filtration and RO in leachate treatment.  The upgraded facility could be as 
shown in Figure 2.7(b). 
 
 

 
 
 
 
 
 
 
 
 

 

(a) 

 
 
 
 
 
 
 
 

 
 
 

(b) 

 

Figure 2.7 Schematic Diagram of Biological Treatment and Reverse Osmosis for 

         Leachate Treatment (Qasim and Chiang, 1994) 
 
2.9.2  Microfiltration and Reverse Osmosis 
 

Incorporation of a multiple membrane system by the combination of microfiltration 

(MF) and reverse osmosis (RO) could be the basis of the treatment sequence developed for 
leachate treatment. The process could be suitable for leachate of all ages and for low to 
medium flow processes. The two-stage processes entails precipitation and microfiltration 
for the removal of toxic metals and suspended solids and reverse osmosis for concentration 
of residual organics

 

as shown in Figure 2.8. The first step of precipitation and 

microfiltration provides a simple pre-treatment for the RO unit and thus producing a high 
quality effluent free of solids and dissolved organics. However, similar to other membrane 
processes, the system is susceptible to fouling; hence, development of antifouling 
strategies and reduction in biofouling needs to be evaluated.  
 
 

Influent 

Anaerobi

Clarifier

Granular  

Filter Media 

RO Concentrate

Gas 

To Drying Bed 

Recarbonation

Chemical Treatment

Influent 

A

Anaerobic 
Digestion 

Return Sludge 

Sludge to Digestion 

Clarifie

Aerobic Treatment 

Granular  

Filter Media 

RO Permeate 

RO Concentrate 

Gas 

RO Permeate 

background image

 38 

 

 

Figure 2.8 Schematic Diagram of Microfiltration/Reverse Osmosis for Leachate Treatment 

(Qasim and Chiang, 1994) 
 
2.9.3  Denitrification-Nitrification/Ultrafiltration and Reverse Osmosis 
 

The application of membrane bioreactors combined with reverse osmosis on a full 

scale leachate treatment was evaluated by PCI Memtech. The process train is as shown in 
Figure 2.9. 

 
Initially a RO unit was used in the leachate treatment; however, combination of 

composted wastewater and leachate led to a decrease in the RO performance. Therefore, an 
aerobic MBR was adopted. The treatment scheme consists of separate nitrification-
denitrification reactors followed by an external UF membrane. The performance of the 
plant is illustrated in Table 2.16. 
 
 

 
 

Figure 2.9 Schematic Diagram of Denitrification-Nitrification/UF and Reverse Osmosis for

 

 

Leachate Treatment

 

 

 
 
 

Influent 

Flow 

Equalization 

Chemical 

Treatment

Microfiltration 

Reverse Osmosis 

Filter Press 

Effluent

RO Concentrate 

(Recirculation) 

Solids 

Leachate 

Ultrafiltration

Discharge to  
Surface Water 

Denitrification   

Reverse Osmosis I 

Reverse Osmosis II 

Permeate I 

Concentrate II 

Concentrate I 
(To Landfill Site) 

Permeate II 

background image

 39 

Table 2.16 Typical Leachate Composition at Each Stage of Leachate Treatment Plant  
 

Parameter (mg/L) 

Raw Leachate 

MBR Process 

RO Permeate I 

RO Permeate II 

COD  
TKN 
AOX 
NO

x

-N 

5,000 
2,000 
4,000 

1,250 

100 

2,500 

<400 

125 

10 

250 

50 

15 

25 

Note: AOX = Adsorbable Organic Halogens 

 

The study indicated that the treatment of weak leachate by conventional aerobic 

methods was inadequate due to a loss of biomass along with activated sludge. The 
application of MBR would be advantageous in such cases.  

 

2.9.4  MBR-UV and Ozone-Reverse Osmosis  
 

Bressi and Favali (1997) evaluated various treatment schemes to develop a modular 

treatment system with flexibility, which is required to treat varied composition and 
characteristic of landfill leachate over the entire lifetime of a landfill. The basic 
technologies selected in the study were: a membrane bioreactor for biological treatment by 
aerobic oxidation and nitrification; a system for UV/ozone for increasing biodegradability 
and partial oxidation; thermal treatment in the form of evaporation for concentration and 
reverse osmosis treatment for the elimination of dissolved solids and reduction in organic 
load.  
 

The choice of ozone as a pre-treatment for stabilized leachate and as a post-treatment 

for young leachate, increases the biodegradability and aids in the partial removal of organic 
residuals after the MBR process, respectively. UV and ozone also offers the advantage of 
breaking down and partially oxidizing low degradable molecules. From the review of the 
process schemes, Bressi and Favari (1997) suggested that the membrane bioreactors should 
be supported by UV/ozone for the oxidation of refractory compounds. Ideally, the 
UV/Ozone process should be located after the MBR process. As a post or polishing 
treatment, they are also effective in degrading colour contributing humic compounds. 
However, it was found that the UV/Ozone process was more efficient when placed after 
MBR process in young leachate and before MBR process in the old leachate.  
 

From the various treatment schemes evaluated, the MBR followed by reverse 

osmosis proved to be most promising system. Removal efficiencies of 96-99 % could be 
obtained and the effluent could be directly discharged into the environment. The reverse 
osmosis process, unlike the MBR, is purely a concentration process which effectively 
reduces the volume to be discharged. From a landfill management point of view, this 
proves advantageous. This process unlike MF-RO process proposed by Qasim and Chiang 
(1994) incorporates the activated sludge and microfiltration unit operations in a single-step 
MBR process thus eliminating the clarifier present in a conventional process. Further, the 
biological pre-treatment of the leachate ensured a better quality permeate from the RO unit 
and prolonged the life span of the RO unit by reducing fouling effects and treatment costs.   
 
2.10

 

 Microbial Toxicity  

 

In the biological treatment plant, the possibility of presence of toxic material is high. 

If present, these toxicants may inhibit the microbial activity, thus deteriorating their 

background image

 40 

activity to degrade the pollutants. Lead is one of the important toxicant due to its abilities 
to causes devastating and irreversible neurological damage to children, leading to learning 
disabilities and damage to the brain and nervous system. Exposures at high doses of lead 
can lead to coma, convulsions and death (LaGrega, et al., 1994). Inhibitory effects on 
biological treatment can be observed by reduced organic removal efficiency, and poor 
settling characteristics of the microorganism in the biological process. The toxicity of the 
pollutant depends on the concentration and type of organism present. In this context, the 
importance of toxicity or inhibition can not be neglected. 

  

Various methods have been described in the literature to determine the toxicity of 

chemicals to microorganisms. Normally, the toxicity of the compound is evaluated with 
organism such as algae, water flea, and fish, which is costly and time consuming. The 
focus of these methods is to mainly investigate the inhibition of microbial respiration in 
relation to rate of oxygen consumption.  

  

 

In biological treatment, toxicity is generally monitored by measuring certain 

activities of the microorganisms. This may be observed by changes in respiratory activity 
or biochemical tests which measure the concentration of certain biochemical agents 
(Talinli and Tokta, 1994; Chen, et al., 1997; Madoni, et al., 1999). It is possible to 
determine the inhibitory effects of compounds with the help of feed from activated sludge 
batch reactors in which a biological seed and various concentrations of inhibitors are 
mixed. Respiratory response is a sensitive determinant which provides a faster and more 
accurate estimate of which is acceptable toxicity studies (Morgan and de Villiers, 1978). 
 
 

Toxicity detection system uses a variety of biological responses and process 

variables, for a wide range of biological species. The measurement of oxygen uptake, 
organic removal efficiency, or enzymatic activity indicates biological responses to the 
various conditions. A variety of toxic agents can cause different patterns of inhibition (i.e., 
activity per unit biomass vs toxicant concentration), on the other hand, various activity 
indicators may show different inhibition patterns for a single toxic agent (Patterson, et al., 
1970).  
 
 

DO concentration is an important variable in the operation of the biological treatment. 

The toxicity could be tested by comparing the respiration rate before and after addition of 
toxicant (Temmink, et al., 1993; Madoni, et al., 1999). The results obtained from toxicity 
test could tell the extent to which the efficiency and operation of biological treatment could 
be affected. 
 
 

The respiration rate of activated sludge depends on the activity of biomass which are 

also depends on some operating conditions in the activated sludge process.  The operating 
conditions include mean cell residence time, organic loading rate, substrate limitation, 
environmental conditions such as pH, temperature, and toxic substances. The maximum 
respiration rate should be constant under normal operating conditions.  In the presence of 
toxicant in the system, the maximum respiration rate and the performance of the system 
will decrease (Kim, et al., 1994). 
 
 Temmink, 

et al. (1993) had conducted a study of copper (Cu) toxicity. During the 

experiment, the copper concentration in the wastewater was increased from 25 to 200 mg/L. 
It was found that the respiration rate decreased about 30% at the copper concentration of 
50 mg/L. The sludge had been completely inactivated when the copper concentration in the 

background image

 41 

influent reached 200 mg/L. For the wastewater polluted with phenol, phenol concentration 
range of 1,000-1,500 mg/L could inhibit the respiration of the sludge by 37%. 
 
 Kim, 

et al. (1994) investigated the toxicity by using respiration meter, the data 

evaluation show that the respiration rate decreased about 20% at Cobalt (Co) concentration 
of 28 mg/L. It was reported that the growth microorganisms was inhibited even at a 
concentration lower than 0.08 mg/L. In addition, the toxicity test was conducted in high 
and low pH conditions and it was found that respiration rate decreased in both. 
 
 Madoni, 

et al. (1996, 1999) investigated the effect of lead toxicity on activated 

sludge process. The respiration rate was inhibited 67% at the soluble lead concentration of 
16.9 mg/L after one hour exposure. The acute toxicity of lead to organisms has been 
reported at concentration ranging from 2 to 6 mg/L.  
 
 

The concentrations of various toxicants and their inhibitory on bacterial respiration 

are summarized in Table 2.17. 
 
Table 2.17 Inhibitory Effect of Various Toxicants 
 

Toxicants Concentration 

(mg/L) 

Inhibition of Respiration 

(%) 

Reference 

Co 28 

20 

Kim, 

et al., 1994 

Cu 50 

30 

Temmink, 

et al., 1993 

Cd 

40 

50 

Talinli and Tokta, 1994

Ni 

50 

Talinli and Tokta, 1994

Pb 16.9 

67 

Madoni, 

et al., 1999 

Phenol 
 

1,000-1,500  

1,600 

37 
50 

Temmink, et al., 1993 
Talinli and Tokta, 1994

 
2.11   Membrane Bioreactors  
 

Bioreactors are reactors that convert or produce materials using functions naturally 

endowed to living creatures.  Reactors using immobilized enzymes, microorganisms, 
animal, or plant cells and those applying new methodologies such as genetic manipulation 
or cell fusion are typical bioreactors (Belfort, 1989).  Therefore, bioreactors are reactors 
used to produce material with new or advanced technology by the application of biological 
functions.  
 

The combination of membranes to biological processes for treatment has led to the 

emergence of membrane bioreactors (MBR) for separation and retention of solids; for 
bubble-less aeration within the bioreactor; and for extraction of priority organic pollutants 
from industrial  contaminated water (Stephenson, et al., 2000). The membrane unit can be 
configured external to or immersed in the bioreactor (Figure 2.10).   

 

In an external circuit, the membranes can be either internally or externally skinned 

whilst submerged membrane reactors should contain membranes that are externally 
skinned.  The incorporating of membranes into the biological reactor has eliminated the 
sedimentation tank from biological treatment step associated with conventional wastewater 
treatment practices. 
 

background image

 42 

 

 

   

 

(a) 

 

 

 

 

 

 

(b) 

 

Figure 2.10 Schematic Diagrams of (a) External Recirculation MBR and (b) Submerged 

   MBR System 
 
2.11.1 Membrane Configuration 
 

Membrane bioreactor configurations include: extractive membrane bioreactors 

(EMBR), bubble-less aeration membrane bioreactors (MABR), recycle membrane 
bioreactors and membrane separation bioreactors. 
 

Treatment by aerobic processes is often limited by insufficient oxygen while using 

air as an oxygen source. The implementation of oxygen as opposed to air as an aeration 
medium would increase the degradation rate of the system. However, since conventional 
aeration devices have high power requirements and a high rate of mixing, these devices 
cannot be used with biofilm processes. MABR process uses gas permeable membranes to 
directly supply high purity oxygen without bubble formation in a biofilm (Stephenson, et 
al
., 2000). The membranes are generally configured in either a plate-and-frame or hollow 
fibre module. However, research has focussed on the hollow fibre arrangement with gas on 
the lumen-side and wastewater on the shell-side. The hollow fibre modules are preferred 
since the membrane provides a high surface area for oxygen transfer while occupying a 
small volume within the reactor. 
 

The membrane recycle bioreactor consists of a reaction vessel operated as a stirred 

tank reactor and a membrane module containing the membrane. The substrate and 
biocatalyst are added to the reaction vessel in pre-determined concentrations. Thereafter, 
the mixture is continuously pumped through the membrane. While the biocatalyst adheres 
to the membrane surface, the medium permeates through the membrane and is recycled to 
the reactor vessel. 
 

A summary of the advantages and disadvantages of each bioreactor configuration is 

presented in Table 2.18. 
 

The versatility and treatment capability of membrane bioreactors has catapulted the 

technology as a viable alternative in water and wastewater treatment over a short period. 
Initial design configurations of external loop systems were prone to fouling which 
prevented stable operation and hence was confined to small-scale operations with limited 
value and applicability.  

Air Outlet

Influent

Effluent

Return Sludge

Air Diffuser

Membrane Unit

Bio-Reactor

Air Compressor

Level Control

Tank

Membrane

Air Diffuser

Compressed Air

Effluent

Influent

Feed Tank

Air Outlet

Influent

Effluent

Return Sludge

Air Diffuser

Membrane Unit

Bio-Reactor

Air Compressor

Air Outlet

Influent

Effluent

Return Sludge

Air Diffuser

Membrane Unit

Bio-Reactor

Air Compressor

Level Control

Tank

Membrane

Air Diffuser

Compressed Air

Effluent

Influent

Feed Tank

Level Control

Tank

Membrane

Air Diffuser

Compressed Air

Effluent

Influent

Feed Tank

background image

 43 

Table 2.18 Advantages and Disadvantages of Membrane Bioreactors (Stephenson, et al., 
2000) 
 

Advantages 

Disadvantages 

Membrane Separation Bioreactors 
Small footprint 
Complete solids removal from effluent 
Effluent disinfection 
Combined COD, solids and nutrient removal in a 
single unit 
High loading rate capacity 
Low/zero sludge production 
Rapid start up 
Sludge bulking not a problem 
Modular/ retrofit 

Aeration limitations 
Membrane fouling 
Membrane costs 

Membrane Aeration Bioreactors 
High oxygen utilization 
Highly efficient energy utilization 
Small footprint 
Feed-forward control of O demand 
Modular/retrofit 

Susceptible to membrane 
fouling 
High capital costs 
Unproven at full-scale 
Process complexity 

Extractive Membrane Bioreactors 
Treatment of toxic industrial effluent 
Small effluent 
Modular/retrofit 
Isolation of bacteria from wastewater 

High capital cost 
Unproven at full-scale 
Process complexity 

 

Systems were designed with long HRT and SRT resulting in little or no sludge 

production. The basic problem with membrane bioreactor technology in the early 
development stages was the high energy costs and the high cost of membranes.  
Application was therefore limited to small industrial and commercial systems that used 
large diameter membranes with little pre-screening and could handle large concentrations 
of solids in the mixed liquor typically of 20,000 to 40,000 mg/L.  
 

The membrane bioreactor was revolutionised when focus shifted to immersed 

membrane bioreactor systems. The membrane was immersed directly into the activated 
sludge tank with constant flow maintained by an upstream level control tank. The system 
SRT was maintained, however, MLSS concentrations were lowered to 15,000 from 25,000 
mg/L.  The evolutions away from the external circuit reduced energy consumption and 
broaden the membrane scope to large-scale varied applications. However, as cited in 
McCann (2002), the membrane costs were high; fluxes were low and a standardised 
operating protocol incorporating flux enhancement and chemical cleaning was not 
established.  
 

Later, large-scale systems were developed and optimization for municipal 

wastewater treatment. The MLSS was further lowered to 15,000 from 20,000 mg/L while 
the SRT remained long to limit sludge production.  Developments in the optimization of 
operating conditions has allowed for prolonging membrane life to approximately 5 years. 
Process developments included 3-mm pre-screening, increase in membrane and plant size, 

background image

 44 

optimization of the filtration cycle, improvement of aerator reliability and improved 
cleaning strategies on a rotational basis. 
 

The development of membrane module, improved anti-trash screening and cyclic 

aeration and standardised design which are the recent advancements. This allowed for the 
systems to be handled at peak loads and prolonged membrane life to at least 5 years and 
reduced membrane costs. 

 

The first full-scale plant was located in South West England, where the MBR was 

designed to treat municipal wastewater in a site with area restrictions and located close to a 
beach and residential area. The plant was able to treat 13,000 m

3

/d and enclosed in a 

building 105 m long. The system was effective in removing bacteria and ammonia. The 
second plant was built in the open and used for dairy effluent treatment.  The plant was 
simple in design and unsophisticated yet was able to treat an effluent load of 16 ton/d on 
BOD and was able to discharge effluent directly into a river. The MBR units were located 
in 10 tanks, each with a flow of 1,000 m

3

/d of screened effluent prior to discharge into an 

existing oxidation ditch. Though, initially it had been used for treating domestic 
wastewater, later its application widened.  
 
2.11.2 Application of Membrane Bioreactors 
 

Bressi and Favari (1997) conducted studies on a MBR system consisting of an 

activated sludge process coupled with an external hollow fibre ceramic MF unit. The 
system was aerated by means of diffusers and the mixed liquor passed through the lumen 
of membrane and was recycled to the activated sludge whilst permeate was extracted on 
the shell side. The continuous recycle aided in maintaining homogeneous conditions within 
the aerobic reactor. 

 
Hall, et al. (1995) investigated the system for removal of adsorbable organic halogen 

(AOX). It gained 61% AOX removal during the operation at HRT of 24 h. It was operated 
under condition of MLSS from 10,000 to 20,000 mg/L and with an initial AOX from 21 to 
50 mg/L. Lubbecke, et al. (1995) experimented the pilot scale for landfill leachate 
treatment by MBR process. Concentration of raw leachate contains 2,700 to 4,300 mg/L 
COD, 200 to 350 mg/L BOD, and 1.5 to 4.4 mg/L AOX. This system was operated at HRT 
from 15 to 25 hours and pressure from 2.5 to 4.5 bars. It achieved 75% to 80% COD 
removal and 30% to 60% AOX reduction under the average permeate flux 15 L/m

2

-h for 

the NF membrane. While, for an average permeate flux of 40 L/m

2

-h for UF membrane, it 

could eliminate 65% and 25% to 30% of COD and AOX, respectively. Jensen, et al. (2001) 
investigated MBR for leachate treatment. This process was conducted at pH range from 6.5 
to 6.8 with HRT of 2.7 days the performance achieved a COD removal efficiency of more 
than 90%.   

 
Results from the study indicated that the membrane bioreactor processes have great 

potential with respect to biomass retention and their treatment efficiency. The study 
showed that the incorporation of membranes in the system retains active biological bacteria 
population and produces a high quality effluent. The system also showed that it was 
probably capable of higher loading rates and has yet to achieve its maximum treatment 
capacity. This was made possible with good control of bacteria population in the reactor 
provided by the membranes. Throughout the study, there was negligible biomass loss 

background image

 45 

through the effluent. Different operational conditions for the application of MBR in 
wastewater treatment are presented in Table 2.19. 

 
When the performance of MBR was evaluated, the removal efficiencies was found to 

be between 78 to 94 % for young leachate with COD > 10,000 mg/L, 60 to 65 % for 
intermediate leachate with COD ranging from 5,000 to 7,000 mg/L  and 23 to 46 % in the 
case of stabilized leachate with COD < 2,500 mg/L. However, the membrane bioreactor 
alone was not able to treat the pollutant to meet effluent discharge as it was unable to 
reduce chlorides, sulphates, ammonia-nitrogen and refractory organic compounds.  

 
When combined reverse osmosis-nanofiltration system has been operated at a landfill 

site in Halle-Lochau, Germany, consistency with a permeate recovery rate of 95 to 97.5 % 
could be achieved.  The primary disadvantages of membrane bioreactors include capital 
costs for the membranes and operating costs associated with routine membrane cleaning.  

 
However, one of the major disadvantages of reverse osmosis and membrane 

processes is membrane fouling, more especially biofouling. Biofouling is a serious 
problem for the operation of membrane bioreactor systems because it results in decreased 
trans-membrane fluxes. Biofouling involves the combined effects of biological, physical, 
and chemical clogging of membrane pores. Clogged pores result in: (a) reduced trans-
membrane fluxes, (b) a need for higher operating pressures, and (c) deterioration of the 
membrane. To eliminate the problems associated with biofouling, it is necessary to study 
biofilm attachment and formation on membrane surfaces. By understanding the 
mechanisms of biofilm formation, the initiation of biofouling formation can be eliminated. 
If the initiation of biofouling is eliminated, the costs associated with cleaning the 
membranes could be dramatically reduced. 

 
Membrane bioreactors are further able to pre-treat leachate more successfully than 

SBR processes prior to disposal in the sewers. Due to the presence of membrane; a 
complete retention of solids is still possible to maintain. However, membrane systems are 
susceptible to shock loading of ammonia. When this occurs, biomass may be affected.   
 
2.11.3 Sludge Characteristics 
 
 

In the membrane bioreactor (MBR) system, membrane fouling is attributed to the 

physico-chemical interaction between the biofilm and membrane. When the biofilm gets 
deposited on the membrane surface, this leads to decline in the permeate flux. This cake 
layer can be removed from the membrane through a suitable washing protocol. On the 
other hand, internal fouling caused by the adsorption of dissolved matter into the 
membrane pores could be generally removed by chemical cleaning.  
 

The phenomenon of membrane fouling in the MBR system is very complex and 

difficult to understand. The sludge characteristic is one of main factors influencing the 
membrane fouling which includes mixed liquor suspended solids (MLSS), dissolved 
substances, floc size and extracellular polymeric substances (EPS). The components of the 
mixed liquor, ranging from flocculant solids to dissolved polymers such as extracellular 
polymeric substances (EPS) can lead to membrane fouling. 

background image

 

 

46  

Table 2.19 Operating Conditions of Membrane Bioreactor Process for Treatment of Different Kinds of Wastewater

 

 

Wastewater 

 

Volume 

(L) 

HRT 

(h) 

Initial COD 

(mg/L) 

BOD/COD 

 

MLSS 

(mg/L) 

SRT 

(d) 

OLR 

(kg COD/m

3

.d) 

Reference 

 

5500  

30,000-50,000 

 

20,000  50 2.2-10.2 

Nagano, 

et al., 1992 

2750 

 

140 

 

42,660 

 

 

10,900 

 

16 

 

5.40 

 

Krauth and Staab, 
1993 

1900 144-240  29,400 

 

1,800 

50-75 

2.5-4.9  Zaloum, et al., 1994 

24 

13,300 

0.49 

Scott and Smith, 1997 

 
Industrial 
Wastewater 
  
  
  

15 

24 

21-50 (AOX) 

 

10,000-20,000 

 - 

Hall, et al., 1995 

220 15-25 

2,700-4,300 

  30,000-47,000   

 

Lubbecke, 

et al., 1995 

287 (m

3

) 54 

14,200 

 

28,700 

31 

6.3  Mishra, et al., 1996 

180 (m

3

 

28.8 

 

4,000 

 

0.2 

 

 

 

 

Dijk and Roncken, 
1997 

9,500 240 

8,000 

(BOD)   

4,000 

30 

 

Ahn, 

et al., 1999 

Leachate 
 
 
   
  

303 (m

3

) 65  850-4,200 0.40-0.75 

8,000-10,000  80 

 

Jensen, 

et al., 2001 

background image

 

 

47 

Mixed Liquor Suspended Solids and Dissolved Substances 
 
The effects of the MLSS concentration on the membrane fouling have been reported 

by many researchers as membrane resistance varies proportionally in MLSS concentration 
(Fane, et al., 1981) and when the MLSS concentration exceeded 40,000 mg/L, the flux is 
found that dramatically decrease (Yamamoto, et al., 1989). However, Lubbecke, et al
(1995) illustrated that MLSS concentrations upto 30,000 mg/L is not directly responsible 
for irreversible fouling, and that viscosity and dissolved matter have a more significant 
impact on flux decline. The increase in viscosity to yield a substantial suction pressure 
increase can causes the failure of MBR system (Ueda, et al., 1996).  
 

The effects of MLSS, dissolved matter, and viscosity on membrane fouling could be 

estimated as given by Sato and Ishii (1991) in the following manner: 

 

326

.

0

368

.

1

926

.

0

)

(

*

)

(

*

)

(

*

*

7

.

842

µ

COD

MLSS

P

R

=

 

Eq. 2.1 

 
 Where: 

Filtration resistance, m

-1

 

Transmembrane pressure, Pa 

µ

 

= Viscosity, 

Pa.s

 

MLSS  

mixed liquor suspended solid, mg/L 

COD 

Soluble chemical oxygen demand, mg/L 

  
 

According to the few researches, the role of mixed liquor in membrane fouling was 

due to the presence of suspended solids (SS), colloids, and dissolved matter which 
contributed to resistance against filtration by 65, 30, and 5 % respectively (Derfrance, et al., 
2000).  Through fractionation of the mixed liquor of activated sludge into floc cell, EPS 
and dissolved mater, Chang and Lee (1998) indicated EPS as an important component 
contributing to fouling causing resistance in the filtration process. However, these studies 
show that individual fouling resistances were not additive due to the sum of the resistances 
given by each component was found to be greater than the measured total resistance. 
Wisniewski and Grasmick (1998) fractionated the activated sludge suspension into 
settleable particles (particle size above 100 µm), supracolloidal-colloidal fraction (non-
settleable particle with a size ranging from 0.05 to 100 µm), and soluble fraction (obtained 
after filtration with 0.05 µm membrane). They revealed that 52% of the total resistance 
could be attributed to soluble components.  
 

Particle Size Distribution 
 
Many researchers have sought to establish the influence of particle size on the cake 

layer resistance. Generally, the particle size of an activated sludge floc ranges from 1.2 to 
600  µm (Jorand, et al., 1995). The break-up of biological flocs, generating fine colloids 
and cells which later form a denser cake layer on the membrane is due to the shear force 
rising as a result of pumping during cross-flow filtration (Wisniewski and Grasmick, 1998; 
Kim,  et al., 2001). According to Wisniewski, et al. (2000), after the floc breakup, the 
suspension produced consists mainly of particles having a size of around 2 µm causing a 
decrease in flux. 97% of the particles in the MBR system have an average diameter smaller 
than 10 µm, while the activated sludge contained flocs range from 20 to 200 µm in size 
(Cicek, et al., 1999). 

 

background image

 

 

48 

 

Floc breakup exposes the EPS present inside the floc structure as well as increasing 

the EPS level in bulk solution, which causing seriously membrane fouling (Chang and Lee, 
2001).  The floc breakup also leads to a loss of biological activity (Brockmann and 
Seyfried, 1996; Ghyoot, et al., 1999; Chang and Lee, 2001), change in microorganism 
population (Rosenberg, et al., 1999) and decreasing settleability (Cicek, et al., 1999). 
 

Extracellular Polymeric Substances (EPS) 

 
 

The EPS production is a general property of microorganisms in natural environments 

and occurs in bacteria, algae, yeast, and fungi (Flemming and Wingender, 2001). They are 
construction materials for microbial aggregates such as biofilm, floc, and sludge.  
 

An activated sludge floc is a microbial entity which is formed by different species 

of biomass. The components of the floc are embedded in a polymeric network of EPS.  A 
significant barrier to permeate flow in the MBR is due to EPS providing a highly hydrated 
gel matrix in which microorganisms are embedded. Microbial EPS are high molecular-
weight mucous secretions from microbial cells.  They are important for floc formation in 
activated sludge liquors (Sanin and Vesilind, 2000; Liao, et al., 2001). The EPS matrix is 
very heterogeneous, with polymeric materials which includes polysaccharides, proteins, 
lipids, and nucleic acids (Bura, et al., 1998; Nielson and Jahn, 1999) 
 
 

Many MBR studies have identified EPS as the most significant biological factor 

responsible for membrane fouling. Chang and Lee (1998) found there to be a linear 
relationship between membrane fouling and EPS levels. Nagaoka, et al. (1996, 1999) 
found that increase in hydraulic resistance and viscosity of the mixed liquor was due to the 
accumulated EPS in the system and also on the membrane. There was a linear relationship 
between the hydraulic resistance and viscosity of the mixed liquor, which caused rapid 
attachment of the suspended EPS. Huang, et al. (2001) found soluble organic substances 
with high molecular weights, mostly attributable to metabolic products, to accumulate in 
the bioreactor.  These had an indirect proportionality with the membrane permeability. 
Accumulation of 50 mgTOC/L resulted in 70% decrease in flux. The fouling proneness 
due to specific EPS components has also been studied. Shin, et al. (1999) ascribed 90% of 
the cake resistance to EPS and found resistance varied with the ratio of carbohydrate and 
protein in the EPS, thereby influencing permeated flux during ultrafiltration. The permeate 
flux decreased with an increasing protein content (Mukai, et al., 2000). Kim, et al. (1998) 
found that the addition of powdered activated carbon to the MBR was shown to increase 
permeability by reducing dissolved EPS levels from 121-196 mg/gVSS to 90-127 
mg/gVSS.  
 
 

Most studies on the effect of EPS on membrane fouling rely on EPS extraction from 

the sludge flocs. However, relatively large amounts of EPS can originate from 
unmetabolized wastewater components and bacterial products arising either from cell-lysis 
of cell-structural polymeric components (Dignac, et al., 1998).  Thus, the quantitative 
expression of flux as a function of EPS concentration has an inherent limitation.    
 
 
 
 
 
 

background image

 

 

49 

2.12   Yeasts 
 
2.12.1 Introduction 

 
The yeast degrade organics either anaerobically (fermentation) or aerobically 

(oxidation). The most typical yeast process applied in food or beverage industries is 
anaerobic, also known as alcoholic fermentation. The end products of fermentation can be 
alcohols, acids, esters, glycerol and aldehydes. A typical reaction of sugar fermentation by 
yeasts is shown in the following reaction: 

 

                                                 

 

C

6

H

12

O

6

 + nutrients                          C

2

H

5

OH + CO

2

 + new biomass 

 

Under aerobic process, complete oxidation of organics yields carbon dioxide and 

water. Abundant supply of oxygen enhances considerable yeast growth; whereas 
incomplete oxidation is accompanied by the accumulation of acids and other intermediary 
products. There are differences in the compounds which can be assimilated by various 
species of yeasts. Some can degrade pentoses, polysaccharides (starch), sugars, alcohols, 
organic acids (lactic, acetic, citric) and other organic substrates. 
 
                         

 

COHNS + O

2

 + nutrients                     CO

2

 + H

2

O + new biomass + end products 

      (Organic matter) 

 
 

Yeasts may utilize the nitrogen required in their metabolism for the synthesis of 

protein from organic (amino acids, urea, vitamins, peptone, aliphatic amines, etc.) and 
inorganic sources (ammonia, nitrite and nitrate). Most species can utilize the ammonium 
ionmaking it appropriate for leachate treatment. Other nutrients required for yeast growth 
include phosphorous, sulfur (organic sulfur and sulphate), minerals (potassium, magnesium, 
sodium and calcium). The C:N:P ratio of Candida utilis biomass was found to be 100:20:5. 
Therefore, nutrient demands of yeasts are higher than that of bacteria whose BOD

5

:N:P 

ratio is 100:5:1 (Defrance, 1993). 
 

Yeasts can grow in a wide pH range (from 2.2 to 8.0). In general, yeasts grow well 

on media with acid reactions (from 3.8 to 4.0), whereas optimum pH values for bacteria 
growth range from 7.5 to 8.5. Yeasts have been used in the fermentation industry which 
requiring operation at a high substrate concentrations and under high loads. It is noted that 
yeast can be utilized to treat the wastewater containing solids, high concentrations of 
organic matter and salt, and other substances, which are difficult to treat using activated 
sludge process (Nishihara ESRC Ltd., 2001). Furthermore, yeasts can grow in 
temperatures ranging from 0 to 47 

o

C, the optimum temperature being from 20 to 30 

o

C.  

2.12.2 Applications of Yeasts for Wastewater Treatment 

 

Miskiewicz,  et al. (1982) developed yeast based treatment for fresh piggery wastes 

by adding carbon source (beet molasses or sucrose). Candida tropicalis, Candida 
tropicalis, Candida robusta 
and Candida utilis were the yeast strains that were cultured in 
the aerated batch reactor. According to the study, molasses are the most appropriate carbon 
source of yeast.  The use of raw piggery waste without carbon supplement leads to low 
biomass yield and low treatment efficiency, inspite of nutrients (N, P) content being high. 
The culture of C. utilis on molasses-enriched piggery waste (5,570 mg COD/L) could 

background image

 

 

50 

obtain high treatment efficiencies of 76% TKN, 60% COD, 84% phosprorus removal at 
HRT of 7 hours and with a F/M ratio of 1.73 g COD/g MLSS.d. The maximum specific 
growth rate of C. utilis was found to be 0.19 h

-1

  

 

Hu (1989) used ten different yeast strains in cultures to treat vermicelli wastewater 

which contained BOD ranging from 24,000 to 44,000 mg/L and high concentration of 
starch, lactic acid and protein. Based on the ability of starch degradation, protein 
hydrolysis and lactic acid tolerance, these yeast strains were screened from 391 colonies 
isolated from soil samples. Most of them could grow well with pH range of 3.0-5.0, 4.0 
being the optimum. The results shows that the two strains could reduce soluble COD by 
92% at HRT of 7 days, F/M ratio of 0.48 g COD/g MLSS.d and VLR of 1.03 kg 
COD/m

3

.d.  Due to the poor settling ability of yeasts, they could not be flocculated or 

settled as in a conventional activated sludge process and were easily washed out with the 
effluent.  Therefore, the HRT in this process have to keep long and same as the SRT. The 
author postulated that the fungi contamination prevented the formation of yeast flocs. 
 

Chigusa,  et al. (1996) used nine different strains of yeasts capable of decomposing 

the oil to treat wastewater from oil manufacturing plants. A pilot scale yeast treatment 
system had been run for one year. According to the results, 10,000 mg/L of hexane extracts 
in the raw wastewater were reduced by the yeast mixture to about 100 mg/L.  
 

Elmaleh  et al.(1996) investigated the yeast treatment of highly concentrated acidic 

wastewater from the food processing industry. The strain Candida utilis was cultured in 
continuously completed mixed reactors. This system did not have a separate settling tank; 
the SRT and HRT of the system were identical.  A mixture of acetic acid, propionic and 
butyric acid was the carbon source of feed wastewater. The pH was maintained at 3.5 to 
prevent any bacterial contamination. The TOC removal obtained was 97% at high loading 
rates (30 kg TOC/m

3

.d). The growth yield and maximum specific growth rate of yeasts 

were similar to those for conventional activated sludge (

µ

max

 = 0.5 h

-

; Y = 0.85-1.05 kg 

SS/kg TOC for acetic acid).  
 

Olive mill wastewater normally contains high concentration of fats, sugars, phenols, 

volatile fatty acids which contribute to a very high COD concentration (100,000-200,000 
mg/L). Scioli and Vollaro  (1997) reported that Yarrowia lipolytica cultured in aerated 
fermenter was capable of reducing the COD level of olive oil processing wastewater by 
80% in 24 h. Fats and sugars were completely assimilated while methanol and ethanol 
were present.  The effluent had a pleasant smell due to the presence of these compounds. 
The authors asserted that a possible approach for pollution reduction in olive-oil-producing 
countries is to use membrane to filter effluent before discharging into the sewage system. 
Useful biomass (40% protein) and valuable lipase enzyme could also be obtained in this 
process.  
  

Arnold,  et al. (2000) investigated the ability of selected yeast strains (C. utilis and 

Galactomyces geotrichum) to purify silage wastewater containing high COD concentration 
of 30,000 to 80,000 mg/L by using the shaker-flask. High removal efficiencies of COD 
(74-95%), VFA (85-99%) and phosphate (82-99%) were obtained after 24 hrs and some 
ammonia was also removed. During treatment, pH rose from initial values of 3.7-5.8 to 
8.5-9.0. This was presumably due to removal of lactic acid and VFAs. An efficient 
removal of P from the system could lead to the shortage of phosphorus. 
 

background image

 

 

51 

Nishihara ESRC Ltd. (2001) studied the effect of the Yeast Cycle System on dried 

food and marine products processing wastewater. In this system, the yeast 
treatment/pretreatment could be conducted with high organic and nutrient loadings. The 
organic removal obtained was more than 90%. Moreover, this system is relatively 
unaffected by load variation and the structure of yeast flocs facilitated oxygen diffusion. 
Table 2.20 gives a comparison with conventional complete mixing activated sludge in 
terms of the operating conditions. Dried food products processing wastewater has BOD

concentrations ranging from 2,920-15,800 mg/L and SS concentration 1,360 mg/L. Marine 
products processing wastewater has BOD

and SS concentrations ranging from 3,550-

8,850 mg/L and 680-940 mg/L respectively. Some yeast strains, Candida edax, Candida 
valdivana  
and  Candida emobii, were predominantly grown during enrichment with this 
raw wastewater. The predominance of yeast strains with the enrichment culture technique 
is based on free competition among different organisms in real wastewater. It was found 
that the yeast treatment process can obtain high efficiency at a higher volumetric loading 
(5–6 times), F/M ratio (2–3 times) when compared with the AS process. The efficiency of 
this system is presented in Table 2.21. 
 
Table 2.20 Operating Conditions of Yeast System Compared with Activated Sludge 
Process (Nishihara ESRC Ltd., 2001) 
 

Parameter Unit 

Dried 

Food 

Products 

Marine 

Products 

Activated 

Sludge* 

Influent BOD

mg/L 5,200 5,450 

110-400 

BOD

5

 volumetric 

loading 

kg/m

3

.day 

9.12 

8.48 

0.8 – 1.9 

Yeast concentration  

mg/L 

8,000-13,500 

8,000-

10,000 

2,500 – 4,000 

BOD

5

 sludge loading 

(F/M) 

kgBOD

5

 

/kgVSS.day 

0.9 

0.9 

0.2 – 0.6 

Water temperature  

°C 

27 

26 

23 – 30 

pH 

 

6.5 

4.8 

6.5 – 8.5 

DO mg/L 

0.8 

0.7 

≥ 2 

SVI  

ml/g 

53 

66 

100 – 120 

Remark * Complete mixed activated sludge (Tchobanoglous and Burton, 1991)  
 
 
Table 2.21 Performance of Yeast Based Treatment System in Dried Food Products and 
Marine Product Industry (Nishihara ESRC Ltd., 2001) 

 

Parameter (mg/L) 

Dried Food Products 

Marine Products 

  
  

BOD

SS T-N T-P  Cl

BOD

SS T-N 

T-P Cl

Influent 5,450 

798 

153 

33 

5,160 

5,218 

1,360 

198 

38 

1,080 

After pretreatment  
by yeast  

150 

113 

72 

18 

5,080 

118 

95 

109 

22 

1,068 

Efficiency (%) 

97 

86 

53 

46 

98 

93 

45 

42 

After activated 
sludge 4 

15 

10 

15 

5,080 

12 

18 

16 

1,068 

Efficiency (%) 

97 

87 

86 

17 

90 

81 

85 

68 

 

background image

 

 

52 

Dan,  et al. (2002) conducted the high salinity wastewater with yeast membrane 

bioreactor. The COD removal efficiency obtained was from 60% to 85% with a volumetric 
loading rate of 3.4 to 16.3 kg COD/m

3

.d. It was found that yeast cell size, low operating 

pH, and poor adhesion capacity reduced membrane fouling. To reduce the problems of 
frequent membrane fouling, the application of yeast to treat wastewater is considered.  
 
2.13   Rationale for the Study and Proposed Treatment Sequence 
 
2.13.1 Leachate Characteristic 
 

The development of a treatment sequence incorporating biological and physico-

chemical processes is necessary for the treatment of medium-age or intermediate landfill 
leachate. In the proposed study, leachate obtained from a sanitary landfill in Pathumthani, 
Thailand which has been in operation for 5 years, together with leachate derived from 
compression of fresh domestic waste from a transfer station in Bangkok, Thailand were 
mixed to simulate a medium-age leachate. 
 

The leachate was simulated to mimic a low biodegradable, high ammonia leachate 

with BOD, COD and TKN ranging from 2,500±500, 8,000±1,000 and 1,900±100 mg/L, 
respectively.  
 

The decision to synthesize a leachate by combining the two leachate sources was to 

attain consistent characteristic was based on the continual variability of leachate obtained 
from a single source. Hence, little or no control of the leachate can be exercised in 
development of a treatment sequence making it more complicated. Since, it has been 
proposed by previous researchers that some degree of control should be maintained over 
the waste dumped and leachate generated, a synthetic leachate is justified. Further, 
Thailand’s tropical climate drastically affects the leachate quality. Therefore, over a long-
term experimental investigation, it is deemed unfeasible to attempt to use a raw leachate 
source. 
 
2.13.2 Need for Ammonia Stripping 
 

Due to the presence of elevated ammonia concentrations in the leachate, sludge 

properties are affected resulting in a fine floc which is difficult to settle. The high 
ammonium concentration also poses toxicity to the microorganisms, thus affecting the 
degradation process. Therefore, the effect of ammonia concentrations of 2,000 mg/L was 
investigated with yeast and bacterial cultures. Due to toxicity, removal of ammonia was 
therefore apparent for leachate treatment. Thus, ammonia stripping was evaluated. 
 

Ammonia removal by air stripping was selected as a pre-treatment for the reduction 

of ammonia from 2,000 to 200 mg/L. Ammonia stripping has the advantage of reducing 
refractory compounds and thereby reducing COD concentrations, by precipitation when 
pH is adjusted. This approach was adopted in the conventional biological nitrification-
denitrification process since nitrification-denitrification processes were subjected to many 
operation problems such as nitrification-denitrification inhibition.  
 

Further, for the leachate characteristic, treatment efficiency by nitrification-

denitrification is considered poor with BOD/TKN < 2.5, BOD/NH

3

 < 4 and COD/TKN < 5 

(Grady,  et al., 1999).  In order to ensure successful removal of ammonia in the 

background image

 

 

53 

nitrification-denitrification process, an external carbon source in the form of leachate, 
methanol etc. could be necessary. An external carbon source could further increase the 
operational costs. Chemical treatment by coagulation, flocculation and precipitation 
eliminates the increased chemical costs making this option realistic for ammonia removal. 
Thus, ammonia stripping seems to be the most viable option. While ammonia stripping can 
be conducted in packed towers with efficiencies up to 95 %, the intention of this study is to 
merely reduce leachate with total nitrogen content of 1,800-2,000 mg/L to a level below 
toxicity for further biological treatment, for which a conventional ammonia stripping 
would be sufficient. Thus, by maintaining an optimal operating condition by controlling, 
air flowrate and pH, an ideal condition based on ammonia removal, ammonia toxicity and 
mixing power efficiency could be obtained using a conventional stirred tank.  
 

One of the main disadvantages of ammonia stripping is the high cost associated with 

pH adjusters. The choice of pH adjuster is also crucial in design and rendering the process 
cost effective, a reduction in the amount of adjuster can be brought about by pre-aerating 
the leachate. The synthetic leachate used in this study has an average pH of 8.5 ±0.5. Since, 
this is already in the alkaline range; the amount of buffer added to raise pH for ammonia 
stripping is not significant.   
 
2.13.3 Need for Membrane Bioreactors 
 

If the pre-treatment of ammonia stripping fails, this would lead to shock loading in 

the biological system, making it difficult for the floc to settle down. This problem can be 
solved by the adoption of a membrane process to replace the clarifier in a normal activated 
sludge process since the membranes can retain total solids until the sludge recovers from 
shock loading of ammonia.  
 

Purification of leachate by membrane processes aids in preventing further 

contamination of groundwater resources and surface water. However, in selecting a 
treatment option, or a combination of treatment operations, the economic feasibility and 
affordability of the technology should also be considered. In this regard, membrane 
filtration has proven to be a justifiable and economic solution in most cases, even when the 
overall costs for the purification are compared with other approaches for leachate treatment 
(Peters, 1997).  
 

By coupling of a membrane with the activated sludge reactor, a membrane bioreactor 

emerges as a logical treatment option. The reduced operational costs associated with 
immersed membrane bioreactors proves advantageous in its application and therefore 
preferred in the present study.  
 

The use of a MBR allows the HRT to be reduced from 1 to 10 days (Qasim and 

Chiang, 1994) to less than 24 h. This reduction is drastic and viable in terms of operation 
costs and effectiveness. Reduction in SRT from conventional activated sludge SRT of 15 
to 60 d has the advantage of reducing air requirements in the MBR.  Maintaining a lower 
MLSS is advantageous since lower the sludge produced, the greater is the effectiveness of 
aeration. This approach effectively reduces the aeration requirements and a smaller SRT 
and HRT reduces the required reactor volume and thus the capital cost. 
 

background image

 

 

54 

Chapter 3 

 

Methodology 

 
 
3.1   Introduction 
 

The present study on landfill leachate treatment comprises of four experimental 

stages, namely: toxicity study, ammonia stripping, membrane bioreactor study and sludge 
characterization. The different experimental stages of this study are shown in the Figure 
3.1. 
 

 

Figure 3.1 Flowchart Showing Different Stages of Experimental Study 

 
3.2   Leachate Characterization 
 
 

The leachate used for the treatment was obtained from Pathumthani Landfill Site and 

Ram-Indra Transfer Station, which were initially characterized. After characterization 
these leachates were mixed in an appropriate proportion to simulate a medium-aged 
leachate composition. The characteristic of the simulated leachate used for the study is 
shown in Table 3.1. 

Acclimatized yeast and

bacteria sludges

Toxicity study

Ammonia stripping

study

Membrane bioreactor

study

Lead

Ammonia nitrogen

MWCO

HRT

Sludge characteristics

Contact time

pH

Gradient velocity

Coupling ammonia stripping

with MBR process

MBR process

MWCO

Sludge characteristics

Acclimatized yeast and

bacteria sludges

Toxicity study

Ammonia stripping

study

Membrane bioreactor

study

Lead

Ammonia nitrogen

MWCO

HRT

Sludge characteristics

Contact time

pH

Coupling ammonia stripping

with MBR process

MBR process

MWCO

Sludge characteristics

Acclimatized yeast and

bacteria sludges

Toxicity study

Ammonia stripping

study

Membrane bioreactor

study

Lead

Ammonia nitrogen

MWCO

HRT

Sludge characteristics

Contact time

pH

Gradient velocity

Coupling ammonia stripping

with MBR process

MBR process

MWCO

Sludge characteristics

Acclimatized yeast and

bacteria sludges

Toxicity study

Ammonia stripping

study

Membrane bioreactor

study

Lead

Ammonia nitrogen

MWCO

HRT

Sludge characteristics

Contact time

pH

Coupling ammonia stripping

with MBR process

MBR process

MWCO

Sludge characteristics

background image

 

 

55 

 
Table 3.1 Composition of Simulated Leachate 
 

Parameters Concentration 

pH 
COD (mg/L) 
BOD/COD 
NH

4

-N (mg/L) 

TKN (mg/L) 
TDS (mg/L) 

7.8-8.2 

8,000±1,000 

0.40±0.05 

1,700±100 
1,900±100 

12,000±1,000 

 Note: Pb concentration is below 0.3 mg/L, which has no effect on microbial toxicity. 
 
3.3   Seed Study 
 
3.3.1  Yeast and Bacterial Sludge 
 
a) Yeast Sludge 

 
The mixed yeast sludge comprises of a mixture of wild yeast varieties that exist in 

the raw wastewater and which quantitatively propagate under normal enrichment 
conditions. The procedure for enrichment of yeasts was carried out according to the 
Standard Methods for the examination of water and wastewater (APHA, et al., 1998). The 
yeast strains were selected based on competition among different organisms present in 
wastewater (Nishihara Ltd., 2001) by the enrichment culture technique. Figure 3.2 
illustrates the procedure for enrichment of yeast. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.2 Diagram Illustrating the Enrichment Procedure 

 

Filling

Seed yeast sludge

(from sediments

)

Aeration

24 h

Drawing

Settling

MLSS

Completion

> 3,000 mg/L

Filling

Seed yeast sludge
(from sediments)

Aeration 24 h

Drawing

Settling

MLSS

Enriched culture

< 3,000 mg/L

Filling

Seed yeast sludge

(from sediments

)

Aeration

24 h

Drawing

Settling

MLSS

Completion

> 3,000 mg/L

Filling

Seed yeast sludge
(from sediments)

Aeration 24 h

Drawing

Settling

MLSS

Enriched culture

< 3,000 mg/L

background image

 

 

56 

The yeast sludge was collected from the bottom sediments of a pond from the 

Nonthaburi landfill site, Thailand. A two-liter container was used for enrichment and was 
done using fill-and-draw process. The wastewater feed (having glucose as substrate) was 
mixed with a diffused aeration system. The pH was adjusted to 3.5 which is optimum for 
yeast growth and can prevent bacterial contamination (Elmaleh, et al., 1996). After 24 
hours of aeration, the biomass suspension was allowed to settle for 10 hours. Yeast cells, 
normally, settle in the bottom, whereas the acid-tolerant bacteria and filamentous fungi 
would remain in the suspension. The bacteria and fungi present in the supernatant were 
removed by decanting the supernatant. Around 1.5 liters of supernatant was decanted and 
fresh medium was added to the next batch. When MLSS of the yeast biomass exceeded 
3,000 mg/L, the enrichment process was accomplished. 
  
b) Bacteria Sludge   
 

The bacterial seed sludge was collected from the aeration tank in the activated sludge 

process of a wastewater treatment plant.  
 
3.3.2  Acclimatization 
 
 

Acclimatization was done in order to obtain a mixed bacterial and yeast culture 

which can tolerate leachate containing low biodegradable organics and high ammonia 
concentration. Five-liter batch reactors were used for acclimatization through fill-and-draw 
process. The operating conditions for the reactors are summarized in Table 3.2. 
 
Table 3.2 Operating Conditions for Yeast and Bacteria Acclimatization 
   

Operating Conditions 

Yeast Reactor 

Bacteria Reactor 

HRT (h) 

24 

24 

MLSS (mg/L) 

10,000 

5,000 

COD (mg/L) 

8,000±1,000 

8,000±1,000 

Temperature (

O

C) 

25 to 30 

25 to 30 

pH 

3.5 to 3.8 

6.8 to 7.0 

 

Both the reactors were aerated by a diffused aeration system and the pH was adjusted 

to 3.5 - 3.8 for yeast growth and 6.8 - 7.0 for bacterial growth, respectively. After 24 hours 
of aeration, the biomass was allowed to settle for 3 hours. After 3 hours of settlement, the 
supernatant was collected and centrifuged at 4000 rpm for 15 minutes. The experiment was 
repeated for the next batch under the same conditions until a COD removal of 70% could 
be achieved. Once the COD removal efficiency reached a value greater than 70%, the 
acclimatization was presumed to be complete. 
 
3.4 Toxicity 

Studies 

 

The toxicity studies were done with yeast and bacterial culture. The toxicity of the 

culture was tested for different concentrations of ammonia and lead. 
 
 
 
 
 

background image

 

 

57 

 3.4.1   Ammonia  Toxicity 
 
 

The experiments were conducted in a closed 0.9-liter batch respirometer equipped 

with a recorder, DO meter, and water jacket vessel to maintain a constant temperature as 
shown in Figure 3.3.  

 

Figure 3.3 Respirometer 

 

The operating conditions for yeast and bacterial culture used in this experiment are 

given in Table 3.3. The experiment was conducted with low S

o

/X

o

 (initial substrate 

concentration/biomass concentration) ratio. The oxygen uptake rate (OUR) was measured 
until the OUR reaches a constant value, which is approximately equal to OUR in the 
endogenous phase (Ekama, et al., 1986). The results from the respirometric experiments 
would provide the OUR data which can be applied to evaluate the inhibition effects of 
ammonia on the microorganisms. Ammonium chloride (NH

4

Cl) was used as a source of 

ammonia. The NH

4

-N concentration was varied from 200 to 2,000 mg/L.  

 
Table 3.3 Operating Conditions for Yeast and Bacteria Mixtures in Respirometer 
 

Operating Conditions 

Yeast Mixture 

Bacteria Mixture 

pH 

3.5 to 3.8 

6.8 to 7.0 

Temperature (

o

C) 30±0.5  30±0.5 

MLVSS (mg/L) 

800 to 1,000 

800 to 1,000 

S

o

/X

o

 ratio 

0.01 to 0.02 

0.01 to 0.02 

Suppressing nitrification 

None 

Adding 70 mg/L as NH

3

-N * 

Remark: * Liebeskind (1999) 
 

The experimental procedure for the determination of the inhibitory effects is as 

follows: 
 

1

2

3

4

5

6

7

8

9

1. Respiration Cell

2. Water Jacket

3. Air Diffuser

4. DO Probe

5. Magnetic Bar

6. Magnetic Stirrer

7. Expansion Funnel

8. DO Meter

9. Recorder

1

2

3

4

5

6

7

8

9

1. Respiration Cell

2. Water Jacket

3. Air Diffuser

4. DO Probe

5. Magnetic Bar

6. Magnetic Stirrer

7. Expansion Funnel

8. DO Meter

9. Recorder

background image

 

 

58 

1.  Obtaining endogenous sludge: 0.9 liter of fresh sludge without the substrate was 

obtained in a respirometer and aerated for two hours. 

 
2.  Suppressing nitrification: With high ammonia concentration during the organic 

oxidation, the oxygen uptake rate of nitrification process was constant. Hence, 
NH

4

Cl of concentration 70 mg/L was added. 

 

3.  Recording endogenous oxygen uptake rate (OUR): After suppressing the nitrification 

process, the mixture was aerated for half an hour before measuring the endogenous 
OUR. 

 

4.  Adding substrate: An accurate dose of substrate was injected into the respirometer 

and the total OUR was recorded by respirogram. Re-aeration was done once the DO 
concentration dropped below 2 mg/L. 

 
3.4.2  Lead Toxicity 
 

The lead toxicity on the bacterial and yeast culture was conducted in the same 

manner as described in the section 3.4.1. Lead nitrate (Pb (NO

3

)

2

) was used as Lead (Pb) 

source. Soluble Pb concentration was varied from 0 to 20 mg/L. At each concentration, the 
sample was filtered with 0.45 µm membrane filter and soluble Pb concentration was 
analyzed using an atomic absorption spectrophotometer (AAS). 
 
3.5   Ammonia Stripping 
 
 

The characteristics of leachate used for the experiment are as described in Table 3.1. 

The summary of the experiments conducted in order to optimize ammonia stripping is 
illustrated in Figure 3.4. 
 

The efficiency of ammonia stripping in ammonia removal was tested varying three 

parameters namely- pH, contact time and the velocity gradient.  

 
The experiments conducted are as follows: 

  

1.  Optimum pH for air stripping: The pH was varied from 9-12 (9, 10, 11, and 12) using 

12 N NaOH solution. The removal efficiency of ammonia at varying pH was 
assessed with a velocity gradient of 2,850 s

-1

 for two hours.  

 
2.  Optimum velocity gradient and contact time: After the optimum pH was obtained, 

the velocity gradient and the contact time were varied. The velocity gradients at 
which the experiment was done were 1,530, 2,850, and 4,330 s

-1

. The contact time 

was varied from 1 to 6 hours. 

  
 

background image

 

 

59 

 

Figure 3.4 Experiments Conducted to Optimize Ammonia Stripping 

 
 
3.6   Membrane Bioreactor 
 
3.6.1  Membrane Resistance Measurement 
 
 

The new membrane module requires a test in order to find out the initial membrane 

resistance. Membrane resistance was measured based on the resistance-in-series model 
which provides a simple means of describing the relationship between permeate flux and 
trans-membrane pressure. According to this model, it is expressed by the following 
equation: 
 

J   =    TMP  

   Eq. 

3.1 

µ R

t

 

 
       Where:  
 

   

 

J  

= permeate flux (m

3

/m

2

.s)  

 

 

TMP   = trans-membrane pressure (Pa) 

 

 

µ 

= permeate viscosity (Pa.s) 

 

 

R

t

 

= total resistance for filtration (1/m) 

 
 

For further understanding of the components of membrane resistances causing the 

membrane clogging,  the total resistance (R

t

) was measured right after the run with the 

membrane still in its clogging condition. R

m

 and R

n

 were obtained by measuring the 

resistance of the membrane after being washed with tap water to remove the cake layer. 
The membrane resistance at the beginning of the run after chemical clean was considered 
as R

m

. R

c

 Value was derived from R

t

, R

m

, and R

n

 using Equation 3.2.  

 
  

Leachate

NaOH Solution 

Variation of Velocity Gradient

and Contact Time 

(for 2, 3, 4, 5 and 6 h)  

Control 

1,530 s

-1

pH  Adjustment 

(for pH 9, 10, 11 and 12)

2,850 s

-1

4,330 s

-1

background image

 

 

60 

 

 

 

 

R

t

   =   R

m

 + R

n

 + R

c

 

  Eq. 

3.2 

 

 Where: 
 

   

 

R

m

  

= intrinsic resistance (1/m) 

 

R

n

  

= resistance due to irreversible fouling (1/m) 

 

R

c

  

= resistance due to cake layer (1/m) 

 

 

 

The membrane after clogging was taken out of the reactor for cleaning. The 

membrane was first cleaned with tap water to remove the cake layer attaching on the 
membrane surface follows by chemical cleaning as listed in Table 3.4 until the membrane 
resistance was recovered to the initial membrane resistance. 
 
Table 3.4 Description of the Chemical Cleaning 

 

Stage 

Cleaning Agent 

Concentration 

Running Time (min) 

NaOH 

3% by weight 

20 

Ultra pure water 

 

10 

3 HNO

3

 

1% by weight 

20 

Ultra pure water 

 

10 

 
3.6.2  Experimental Set-up 
 
 

The experiments were conducted in two reactors namely: (1) yeast membrane 

bioreactor (YMBR), and (2) bacterial membrane bioreactor (BMBR) as shown in Figure 
3.5. The reactor and the membrane dimensions of the bacterial and yeast bioreactor were 
similar. The experimental set-up consists of a feed tank placed above the bioreactors. The 
volume of the feed entering the bioreactor from the feed tank was maintained by a level 
controller tank. A volume of 5L was maintained in the bioreactor. The technical details of 
the membrane bioreactor are given in Table 3.5. 
 
Table 3.5 Technical Parameters of the Experimental Plant 
 

Parameters Description 

Manufacture Mitsubishi 

Rayon 

Model STNM424 
Membrane surface (m

2

) 0.42 

Type of module  

Hollow fibre 

Membrane material 

Polyethylene 

Nominal pore size (

µm) 

0.1 

Reactor shape 

Cylindrical 

Reactor material 

Transparent acrylic  

Reactor diameter (cm) 

10 

Reactor volume (L) 

Aeration Stone 

diffuser 

Backwashing Air 

backwash 

Cleaning 

3% NaOH and 1% HNO

3

 

 
 

background image

 

 

61 

 

 

Figure 3.5 Schematic Diagrams of Membrane Bioreactor with and without Ammonia Stripping

Air Compressor

Ammonia Stripping

Reactor

Level Control

Tank

Treated Water

Tank

Suction Pump

Timer

Vacuum
Gauge

Air Filter

Pressure
Gauge

Air Diffuser

Excess
Sludge

Air Compressor

Air Outlet

pH Controller

Sulfuric Acid 

Solution 

P

P

P

Yeast Membrane Bioreactor

Leachate

Feed Tank

Dosing 

Pump

Air Compressor

Level Control

Tank

Treated Water

Tank

Suction Pump

Timer

Vacuum
Gauge

Air Filter

Pressure
Gauge

Air Diffuser

Excess
Sludge

Air Compressor

Air Outlet

pH Controller

Sulfuric Acid 

Solution 

P

P

Bacteria Membrane Bioreactor

Dosing 

Pump

Air Compressor

Ammonia Stripping

Reactor

Level Control

Tank

Treated Water

Tank

Suction Pump

Timer

Vacuum
Gauge

Air Filter

Pressure
Gauge

Air Diffuser

Excess
Sludge

Air Compressor

Air Outlet

pH Controller

Sulfuric Acid 

Solution 

P

P

P

Yeast Membrane Bioreactor

Leachate

Feed Tank

Dosing 

Pump

Air Compressor

Ammonia Stripping

Reactor

Level Control

Tank

Treated Water

Tank

Suction Pump

Timer

Vacuum
Gauge

Air Filter

Pressure
Gauge

Air Diffuser

Excess
Sludge

Air Compressor

Air Outlet

pH Controller

pH Controller

Sulfuric Acid 

Solution 

P

P

P

P

P

P

P

Yeast Membrane Bioreactor

Leachate

Feed Tank

Dosing 

Pump

Air Compressor

Level Control

Tank

Treated Water

Tank

Suction Pump

Timer

Vacuum
Gauge

Air Filter

Pressure
Gauge

Air Diffuser

Excess
Sludge

Air Compressor

Air Outlet

pH Controller

Sulfuric Acid 

Solution 

P

P

Bacteria Membrane Bioreactor

Dosing 

Pump

Air Compressor

Level Control

Tank

Treated Water

Tank

Suction Pump

Timer

Vacuum
Gauge

Air Filter

Pressure
Gauge

Air Diffuser

Excess
Sludge

Air Compressor

Air Outlet

pH Controller

pH Controller

Sulfuric Acid 

Solution 

P

P

P

P

P

Bacteria Membrane Bioreactor

Dosing 

Pump

Option 

background image

 

 

62 

The reactors were continuously aerated with the help of stone diffusers placed at the 

bottom of the reactors. The polyethylene hollow fibre membrane was kept in the upper end 
of the reactors. Peristaltic pumps were used to withdraw permeate from these membrane 
modules. The reactors were also equipped with the pH meter to monitor pH continuously. 
The pH of the yeast and bacterial reactor was maintained within the range of 3.5 to 3.8 and 
6.8 to 7, respectively with the help of an external dosing pump. The DO in the reactors was 
maintained around 2-4 mg/L.  
 

Both the bioreactors were operated with periodic air backwashing. The filtration 

cycle of the reactor consists of 25 minutes of filtration, 3 minutes of air backwashing at a 
pressure of 300 kPa, and 1 minute of air release. The operation of filtration, backwash and 
release air was alternatively controlled with an intermittent controller and solenoid valves. 
The trans-membrane pressure (TMP) was measured using a mercury manometer.  
 

Sampling from the reactors was done from the sampling port. The sludge from the 

reactor could be withdrawn from a sampling port present in the bottom of the reactor. The 
treated leachate was collected in a container kept at the side of the reactor. The treated 
effluent corresponds to permeate from the membrane bioreactor. 
 
3.6.3  Parametric Studies 
 

The experiments were done by varying the volumetric loading. The different 

organic loading rates (OLR) used in this experiment are summarized in Table 3.6. Each 
volumetric loading was maintained at least for 25 days. Furthermore, the excess sludge 
was periodically withdrawn to maintain a mean biomass concentration of 10,000 to 12,000 
mg/L of MLSS. The pH in the YMBR system and BMBR system was maintained around 
3.5 to 3.8 and 6.8 to 7.0, respectively. The varied mean hydraulic retention time in which 
the experiment was conducted are 12, 16, 20 and 24 hours. The hydraulic loading varied 
from 6.75 to 17.88 kg COD/m

3

.d . 

 
Table 3.6 Experimental Operating Conditions of YMBR and BMBR Systems 
 

Stage Time 

(days) 

Mean HRT 

(h) 

OLR 

(kg COD/m

3

.d) 




1-25 

26-60 

61-149 

150-181 

24 
20 
16 
12 

6.75-8.33 

7.60-11.14 
9.54-14.40 

13.92-17.88 

 
3.6.4  Molecular Weight Distribution 
 

To investigate the composition of organic content in the leachate on the basis of their 

molecular weight, ultrafiltration membrane (UF) was used. Ultrafiltration was performed 
in a 300 ml cell, using flat circular membrane of 76 cm diameter with molecular weight 
cut-off (MWCO) of 5,000, 10,000, and 50,000 Daltons (Da). Nitrogen gas was used to 
apply pressure in the UF cell at about 2 bars (Gourdon, et al., 1989; Huang, at el., 2000). 
The three types of UF with molecular weight cutoff ranges are presented in Table 3.7. The 
fractionated organics in the treated leachate were also measured to find out the organic 
removal efficiency of the membrane bioreactor in terms of their molecular weight. The 
organics were fractionated into four groups based on their molecular weight (MW): (1) 

background image

 

 

63 

MW larger than 50 kDa, (2) MW between 10 kDa and 50 kDa, (3) MW between 5 kDa and 
10 kDa, and (4) MW less than 5 kDa. The procedure for molecular weight distribution 
study is described in Figure 3.6.The procedure for molecular weight distribution is as 
follows: 

 

1.  100 mL of sample was filtered in a 0.45 µm membrane before fractionating it with 

UF at 50 kDa MWCO at a pressure of 2 bars for 30 minutes. 

 
2.  The permeate of the UF membrane used for 50 kDa MW was collected and further 

fractionated with serial processing method using the corresponding UF at 10 kDa, 
and 5 kDa MW, using the same mode of operation. 

 

3.  The volume of retentate of each fraction and permeate obtained after 5 kDa MW UF 

were measured and analyzed for COD concentration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3.6 Methodology for Performing Molecular Weight Cut-off Distribution 

 
 
 
 
 

50 kDa MW

Leachate 

Retentate 

Permeate 

10 kDa MW

Retentate 

Permeate 

5 kDa MW

Retentate 

Permeate 

background image

 

 

64 

Table 3.7 Characteristics of Ultrafiltration Membrane 

 

UF Membrane Types 

MWCO (kDa) 

Koch membrane, M-100 

50 

Koch membrane, K-131 

10 

Koch membrane, K-328 

 
3.6.5  Sludge Characterization 
  

The variation in sludge characteristics was estimated in both the reactors. The 

YMBR and BMBR systems can be divided into three zones based on the membrane cycle. 
Based on the membrane fouling, the sludge was sampled for analysis. Sludge properties 
which were determined in both the reactors were the extra cellular polymer substances 
(EPS), sludge volume index (SVI), capillary suction time (CST), MLSS and viscosity. 
 
3.7   Ammonia Stripping Coupled Membrane Bioreactor 
 
 

The membrane bioreactor was coupled with ammonia stripping to find out the 

treatment efficiency of this combined treatment system. The experimental set-up consists 
of two treatment systems, namely: ammonia stripping and membrane bioreactor (MBR) as 
shown in Figure 3.5. Figure 3.7 show the procedure of the coupling ammonia stripping 
with MBR. 
 
 

The operating conditions for ammonia stripping process were based on the results 

obtained from the previous experiment. Mean velocity gradient, pH and the mixing time 
were based on the experimental results obtained after optimization of the ammonia 
stripping conditions. The ammonia stripped leachate was used as a feed in both the YMBR 
and BMBR reactors. The design of the reactors used for the experiment was similar to 
bioreactor as described 3.6.2. 
 

The HRT used in this experiment are from the results obtained after performing the 

parametric studies as described in session 3.6.3. The excess sludge was periodically 
withdrawn to maintain a mean biomass of 10,000 to 12,000 mg/L of MLSS. The bioreactor 
was assessed in terms of the membrane performance in leachate treatment and sludge 
characteristics. 

background image

 

 65 

 
 

 

Figure 3.7 Flowchart Showing Ammonia Stripping Coupled MBR Process 

 
 
3.8   Analytical Methods 
 

 
The analyses performed were in accordance with the Standard Methods (APHA, et 

al., 1998). Table 3.8 lists parameters and their analysis methods in this study. 
  
Extraction of Extracellular Polymeric Substances (EPS) 
  
 

The quantification of EPS in biomass was analyzed using thermal extraction method 

(Chang and Lee, 1998). A measured volume of sludge solid was centrifuged in order to 
subtract the soluble EPS at 3,200 rpm for 30 min from bound EPS. After collecting the 
soluble EPS, the remaining pellet was resuspended with 0.9% NaCl solution before heating 
at 80 

o

C for 1 h. The extracted solution was separated from the sludge solids by 

centrifugation at 3,200 rpm for 30 min. The obtained supernatant was the bound EPS. The 
quantity of extracted EPS was measured by measuring total organic carbon (TOC), 
proteins and carbohydrates. 
 
 
 
 
 
 
 
 
 
 
 
 

 
       Ammonia Stripping 

     Raw Leachate 

Operating Conditions: 
- pH 
- Velocity Gradient  
- Operation Time 

Membrane Bioreactor using Bacterial and 

Yeast Cultures 

background image

 

 66 

Table 3.8 Parameters and Their Analytical Methods 
 

Parameter 

 

Method of Analysis 

 

Equipment Used 

 

pH 

pH meter 

pH meter 

DO 

DO meter 

DO meter 

COD Dichromate 

reflux Titration 

BOD 

Oxitop  

Oxitop bottles 

TOC Combustion 

method 

TOC 

analyser 

Pb 
 

Flame atomic absorption 
spectrometry 

Atomic absorption spectrometry
 

Ammonia Distillation 

Titration 

Nitrite and Nitrate 

Colorimetric UV-visible 

spectrophotometer 

TKN Macro-Kjeldahl  Titration 
Phosphate 

Ascobic acid 

UV-visible spectrophotometer 

MLSS 

Dried at 103-105 

o

C Filter/Oven 

MLVSS 

Ignited at 550 

o

C Furnace 

TDS 

Conductivity meter 

Conductivity meter 

Conductivity 

Conductivity meter 

Conductivity meter 

MWCO 

Membrane filtration 

UF membrane module 

SVI 
  

Settle sludge volume 
after 30 minutes 

1000 ml cylinder 
  

Viscosity 
 

Rotating torque cylinder at 100 
rpm 

Viscometer 
 

CST 

Capillary time 

CST apparatus 

EPS 
  

Thermal and  
centrifugation method 

Centrifugal equipment 
  

Proteins Lowry 

Spectrophotometer 

Carbohydrates Phenolic-sulfuric 

acid 

Spectrophotometer 

 
  

background image

 

 67  

Chapter 4 

 

Results and Discussion 

 
 

4.1  Simulation of Leachate Characteristic for Treatment of Middle Aged Leachate 
 

Leachate varies widely in quantity and in composition from one place to another 

(Kennedy, et al., 1988). Such variability along with other factors make the applicability of 
a method to treat leachate highly dependent on the characteristics of the leachate and 
tolerance of the method against changes in leachate quality (Henry, et al., 1982). As 
mentioned in section 2.13.1, it is difficult to predict the applicability of the leachate 
treatment sequence with varying leachate quality. To overcome this problem, leachate with 
a quality emulating the medium landfill leachate was simulated, and used in this 
experimental work. 

To arrive at the appropriate leachate quality to be taken for the study, a survey on the 

medium aged leachate in Asian context is required. Table 2.3 gives the typical 
characteristics of the middle aged landfill leachate. The medium-aged leachate contains 
COD ranging of 5,000 to 10,000 mg/L and BOD/COD ratio of 0.1 to 0.5 (Qasim and 
Chiang, 1994; Amokrane, et al., 1997). The medium landfill leachate is usually less 
biodegradable than the young leachate. The high ammonium concentration of around 2,000 
mg/L makes the medium aged leachate treatment even more complicated. The NH

4

+

-N is 

dominant among the nitrogen forms making it an important parameter to be considered in 
leachate treatment.  Another important parameter taken into consideration is the alkalinity. 
The alkalinity is also found to be high in leachate and significant in leachate treatment. As 
the leachate is nutrient deficient in terms of phosphorus, and often phosphorous 
supplement was added to enhance the leachate treatment. Based on the literature review, a 
simulated leachate quality was used with BOD/COD ratio ranging from 0.35 to 0.45, COD 
ranging from 7,000 to 9,000 mg/L, and total nitrogen ranging from 1,800 to 2,000 mg/L as 
described in Table 3.1. 
 

The leachate simulated for the study was prepared by combining the leachate 

collected from Pathumthani Landfill Site (PS) and Ram-Indra Transfer Station (RIS). 
Table B-1 of Appendix B gives the leachate quality of the two sites along with the mixed 
leachate quality. The BOD/COD of the mixed leachate was found to be around 0.44-0.45. 
Table 4.1 presents the consistency of the simulated leachate used in the study. 
 
Table 4.1 Compositions of Leachate Simulated from Leachates Obtained from Pathum-
thani Landfill Site (PS) and Ram-Indra Transfer Station (RIS) 

COD 

 (mg/L) 

BOD 

(mg/L) 

BOD/COD 

 

NH

3

-N 

(mg/L) 

TKN 

(mg/L) 

7,715 

3,484 0.45 1,791 2,072 

7,733 

3,460 0.45 1,623 1,850 

7,404 

3,353 0.45 1,624 1,969 

7,248 

3,205 0.44 1,558 1,898 

 
 
  

background image

 

 68  

4.2 Biokinetic 

Studies 

 

Bio-kinetic experiments are important in any biological treatment systems. A 

biological system consists of a mixture of organisms with different growth patterns and 
degradation rates. The overall growth and degradation rate is important for the degradation 
of the pollutants present in the waste. Therefore, bio-kinetic studies were conducted to get 
an overall picture of the degradation potential and growth of the microorganisms used in 
the degradation pattern.  

 

4.2.1  Acclimatization of Mixed Yeast and Bacterial Sludge 
 

Prior to the biokinetic study, it is necessary to acclimatize the organisms to the 

prevailing toxic conditions of the leachate having high COD and ammonia concentrations 
along with other humic organic components. After acclimatization of the culture to be used, 
a rich mixture of resistant leachate degrading organisms could be obtained. In the present 
experiment, bacterial and yeast culture were used to degrade the leachate in the membrane 
bioreactors. Preceding acclimatization of the yeast culture, to obtain a wide range of the 
yeast species, yeast was enriched using the standard enrichment technique. The enrichment 
was completely accomplished once the yeast reached a MLSS concentration of 3,000 mg/L. 
The acclimatization and the enrichment of the bacterial and yeast culture was done as 
described in section 3.3.2. The pH of the yeast culture was maintained at around 3.5 as 
yeast activity is pronounced at low pH and this would also help in preventing bacterial 
contamination.  
 
(1) Organic Removal 
 

The acclimatization of the bacterial and yeast culture were done as described in 

section 3.3.2 with the simulated medium-aged landfill leachate having characteristic given 
in section 3.2 with variation in COD load, which was step-wise increased to finally obtain 
an acclimatized culture. The operation conditions for the acclimatization process are 
mentioned in the Table 3.2. The organic load while acclimatizing was step wise increased 
from 3,800 to 7,300 for bacterial as well as yeast culture. The acclimatization was done 
step-wise until a COD removal approximately 70% could be achieved. The changes in the 
biomass concentration along with the F/M ratio and COD removal efficiencies were 
noticed. These measured parameters are given in Table B-2 and B-3 of Appendix B.  
 

Acclimatization of yeast and bacterial culture took about 67 days. The change in the 

COD removal efficiency and the F/M ratio is given in Figure 4.1 and 4.2.  It was found that 
after 67 days, the COD removal efficiency with yeast culture was higher than that of 
bacterial culture. The COD removal efficiency reached 75% in yeast sludge compared to 
66% in the bacterial sludge. This indicates that, yeast culture could probably be more 
effective in leachate treatment than the bacterial culture. However, as the results obtained 
are not sufficient to conclude that yeast system has a better performance than bacteria 
system, further investigation is necessary. F/M ratio decreased from 1.01 to 0.62 kg 
COD/kg SS.d in the yeast culture and from 1.45 to 1.14 kg COD/kg SS.d in the bacterial 
sludge. The difference between the F/M ratios in the bacterial culture was not as much as 
the yeast culture. This suggests that the growth of the yeast culture was more prominent 
than the bacterial culture. Lower the F/M ratio, the better is the leachate treatment capacity 
of the system. This could be the reason for the better removal efficiency of COD by the 
yeast culture. 

background image

 

 69  

 
 

 

Figure 4.1 Variation in F/M and COD Removal Efficiency in Yeast Sludge 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2 Variation in F/M and COD Removal Efficiency in Bacterial Sludge 

 
 
 

40

50

60

70

80

0

10

20

30

40

50

60

70

80

Time (Days)

C

OD Rem

oval

 Effeciency (%)   

0.40

0.60

0.80

1.00

1.20

1.40

1.60

F/M (

kg

C

O

D

/k

g SS.d)

 

COD Removal Effeciency
F/M Ratio

 

40

50

60

70

80

0

10

20

30

40

50

60

70

80

Time (Days)

COD R

em

oval Effec

iency (%)   . 

0.40

0.60

0.80

1.00

1.20

1.40

1.60

F/M (

kgCO

D

/kg SS.d) 

COD Removal Effeciency
F/M Ratio

background image

 

 70  

(2) Biomass 
 

The growth of biomass is important for the treatment of the leachate. Sufficient 

MLSS should be obtained in order to get a good COD removal efficiency. The change in 
the biomass for the bacterial and the yeast culture when stepwise COD load was increased 
is illustrated in the Figure 4.3 and 4.4.  The initial MLSS of the yeast reactor was around 
3,750 mg/L, while the bacterial initial sludge MLSS was 2,620 mg/L.  The final MLSS of 
yeast and bacteria after acclimatization were 11,700 and 6,420 mg/L, respectively. The 
MLSS concentration maintained throughout the membrane bioreactor experiment was 
about 10,000 mg/L for the yeast reactor and 5, 000 mg/L for the bacterial reactor. The final 
MLSS in the yeast system was about 3.12 times the initial MLSS concentration which 
shows a 21 % increase in the biomass. In the bacterial system, the final MLSS was 2.5 
times initial biomass, which shows an increase of 14.5% in the biomass. Once the cultures 
have been acclimatized with a final leachate concentration having COD of 7,300 mg/L 
(approximately the initial concentration to be used in the bioreactors), the cultures was 
used for the experimental studies. 

 

 

Figure 4.3 Increase in Biomass during Acclimatization of the Bacterial Sludge 

0

1000

2000

3000

4000

5000

6000

7000

0

10

20

30

40

50

60

70

80

Time (Days)

MLS

S

 (mg/L

)

3000

4000

5000

6000

7000

8000

9000

Influent C

OD (mg

/L)    .

MLSS
Influent COD

background image

 

 71  

 

Figure 4.4 Increase in Biomass during Acclimatization of the Yeast Sludge 

 

After the acclimatization process, the organisms were microscopically observed.  

The Figure 4.5 and 4.6 show the yeast and the bacterial culture under the microscope. The 
yeast cells contained egg-shaped and spherical cells. The bacterial culture was dominated 
by the rod-shaped organisms containing both gram positive and gram negative organisms.  

 

 

 

 
 
 

Figure 4.5 Predominantly Spherical and Egg-shaped Yeasts with Budding in the Yeast 

    Reactor (x1500) 
 
 
 

 

0

2000

4000

6000

8000

10000

12000

14000

0

10

20

30

40

50

60

70

80

Time (Days)

MLSS (mg/L)   

3500

4500

5500

6500

7500

8500

Influe

nt COD

 (mg/L

)    

MLSS
Influent COD

 

background image

 

 72  

 

 
 
 

 

 

(a) 

 

 

 

  

 

(b) 

 

Figure 4.6 Bacteria Cells in the Mixed Bacteria Sludge: a) Gram Negative and b) Gram  

   Positive (x1500) 
 
4.2.2  Kinetics of Yeast and Bacterial Growth 
 
 

Optimum environmental conditions are important for the growth of the 

microorganisms as well as the degradation of the organic components. To assess the 
optimum conditions in the systems, it is necessary to monitor the growth of the 
microorganisms. This could be achieved in several ways. Respiration (oxygen 
consumption) is probably the most widely tested and accepted bacterial monitoring 
technique (Cairns and Van Der Schalie, 1980). Normally, bacterial respiration results in a 
certain decrease in oxygen concentration in the medium depending upon the retention time 
of the chamber and temperature. This oxygen uptake by the organism can help us describe 
the growth pattern of the microorganism. Reeves (1976) used the respirometer to record 
the oxygen uptake in the activated sludge unit.  
 
 

The Oxygen Uptake Rate (OUR) refers to the rate of oxygen consumption by 

aerobic bacteria per unit time (Chen, et al., 1997). It is produced by the slope of the 
relationship between the dissolved oxygen and the exposure time. By measuring the 
oxygen uptake rate, one can indirectly obtain the specific growth rate of the 
microorganisms as rate of the oxygen uptake is stoichiometrically related to the organic 
utilization rate and the growth rate.  The operation condition used in the biokinetic studies 
in the bacterial and yeast reactor is described in Table 3.3. In the treatment process, the 
substrate concentration and the limiting nutrients has an effect on the specific growth rate 
of the microorganism. The effect of the substrate concentration in the bacterial and yeast 
culture is given the Figure 4.7 and 4.8, respectively. 
 
 
 

background image

 

 73  

 

Figure 4.7 Specific Growth Rate of Mixed Bacteria Sludge with Increasing Substrate  

     Concentration 
 
 
 

 

Figure 4.8 Specific Growth Rate of Mixed Yeast Sludge with Increasing Substrate  

       Concentration 
 
 

0.00

0.10

0.20

0.30

0.40

0.50

0

10

20

30

40

50

Substrate  (mg COD/L)

Spe

cific Growth Rate

   

( d

-1

)

 

0.00

0.10

0.20

0.30

0

10

20

30

40

50

Substrate (mg COD/L)

Sp

ecific Growth Rate   

(d

 -1

)

background image

 

 74  

The various parameters concerned with biokinetic study of the bacterial and yeast 

culture are given in Table C-1 and C-2 of Appendix C. The various biokinetic parameters 
were measured using the Monad’s model. The substrate concentrations used in the 
experiment from 5 to 40 mg/L and 7 to 42 mg/L with yeast and bacterial culture, 
respectively. The rate of growth of the organisms in the bacterial culture was found to be 
0.009 to 0.03 mg COD/mg VSS. h and 0.008 to 0.02 mg COD/mg VSS. h in the yeast 
culture when the substrate concentration was gradually increased. The maximum yield 
coefficient was 0.60 mg VSS/mg COD in the bacterial culture and 0.51 mg VSS/mg COD 
in the yeast culture. The important parameters for yeast and bacteria sludge are presented 
in Table 4.2. Additionally, estimation of the parameter group (µ

max

/(Y.K

s

)) is used as a 

measure for comparing the biodegradation kinetics, as suggested by Grady, et al. (1999).  

 
Comparison of the biokinetic parameters for both yeast and bacteria sludge treating 

leachate illustrates that the maximum specific growth rate (µ

max

) and the substrate 

utilization rate (k) were determined to be less than the typical values for domestic 
wastewater whereas Y value was in the range of domestic wastewater. There is a case that 
the µ

max 

and Y values are higher than usual. This might be noted that the µ

max

 and Y values 

are not always indicated the biodegradability because there are other factors that control 
the biodegradation kinetics such as enzyme activity and substrate concentration. The yield 
coefficient might be high and yet the enzyme activity might be low, resulting in slow 
degradation rate. Sometimes the degradation rate might be dependent upon substrate 
concentrations. Moreover, the parameter group (µ

max

/(Y.K

s

)) of yeast and bacteria is 1.77 x 

10

-3

 and  3.06 x 10

-3

 L/mg.h, respectively, indicating that the biodegradation of organics by 

yeast is less than that of bacteria. Comparison of biokinetic parameters with the other 
leachate case studies and the domestic wastewater is expressed in Table 4.2. 
 
Table 4.2 Biokinetic Coefficients of Yeast and Bacteria Sludge for the Leachates 
 

Biokinetic parameters 

 

Type of 

Sludge 

µ

max

  

(d

-1

(mgVSS/mgCOD) 

k  

(d

-1

µ

max

/Y.K

s

 

(L/mg.h) 

 

Reference 

 

Yeast sludge 

0.27 

0.49 

0.51 

1.77 x 10

-3

  Present study 

0.42 

0.52 

0.81 

3.06 x 10

-3

  Present study 

0.30 
0.45 

0.39 
0.63 

0.77 
0.71 

1.57 x 10

-3

 

1.00 x 10

-3

 

Zapf-Gilje and 
Mavinic, 1981 

0.23 

0.50 

0.46 

1.06 x 10

-4

 Gaudy, 

et al., 

1986 

8.16 
0.12 

0.85 
0.67 

9.6 

0.18 

2.8 x 10

-4

 

0.4 x 10

-4

 

Pirbazari, et al.
1996 

 
 
 
Bacteria 
sludge 

0.56 

0.36 

1.56 

1.06 x 10

-4

 Chae, 

et al., 

1999 

Domestic 
wastewater 

6.00 0.60 

(0.4-0.8) 

2-10 

2.08 x 10

-2

   Grady, et al., 

1999 

 

In both cases, the maximum specific growth rate (µ

max

) was found to be less than the 

domestic wastewater. This could be the type of organisms prevailing in the domestic 
wastewater is different from that of the leachate. Though the maximum specific rate 
differed from that of the domestic wastewater, the yield coefficient of both yeast and 
bacteria sludge were found to be in the same range as domestic wastewater, while the 
substrate utilization rate was lower than that of domestic wastewater. This might be due to 

background image

 

 75  

change in the predominant species while carbon assimilation metabolism with different 
substrates.  
 

The yield depends upon the oxidation state of the carbon sources and nutrient 

elements, degree of polymerization of the substrate, pathway of metabolism, growth rate 
and other physical parameters of cultivation (Tchobanoglous, et al., 2003). The maximum 
yield coefficient of the bacterial culture was found to be greater than that of the yeast 
culture signifies that bacterial growth is more pronounced than that of the yeast culture. 
This is further supported by the evidence that the specific growth rate of the bacterial 
culture was 0.42 d

-1

 compared to that of 0.27 d

-1

 of the yeast culture. 

 

 The growth rate of the bacterial culture was almost 1.53 times the yeast culture at a 

maximum substrate concentration of around 40 mg/L COD. Such an observation is in 
accordance with the biokinetic studies conducted by Dan (2002) in high saline wastewater, 
where the yeast culture showed a lower yield coefficient and specific growth rate in the 
yeast system compared to that of the bacterial system.  

 

4.2.3 Toxicity Studies 
 

In addition to many organic and inorganic compounds that are present in the landfill 

leachate, the presence of toxic substances also persists. These toxic compounds not only 
pose harm to the environment when released but also affect the efficiency of the biological 
treatment system. These metals affect the performance of the bioreactors by inhibiting the 
bacterial growth. Oxygen consumption in a biological system has been monitored in 
several studies to monitor the toxicity of the wastewater from several sources (Solyom, et 
a
l., 1976; Solyom, 1977). For an aerobic organism, toxicity test could be measured by 
measuring the oxygen uptake rate (OUR) in presence of the toxicant, which will signify the 
inhibitory effect of the toxicant on the microorganism (Chen, et al., 1997).  
 
(1) Ammonia Toxicity 
 

The ammonium concentration in the leachate is usually found to be very high. As 

mentioned by Keenan, et al. (1984), the high concentration of ammonia is a challenge for 
the biological treatment of leachate as it may brings about toxicity to the organisms. For 
better understanding of the effect of the ammonia concentration on the growth of the 
organisms used in the present study, toxicity test was done with ammonium chloride as the 
source of ammonia. The operational parameters for the toxicity test are described in Table 
3.3. The procedure of toxicity test is described in section 3.4.1. The ammonium chloride 
concentration used in the study were 70, 1000, 1500 and 2000 mg/L. The substrate 
concentration used in the study was 7 mg COD/L for the bacterial system and 5.6 mg 
COD/L for the yeast system.  
 

An aerobic biological process contains two major classes of aerobic microorganisms, 

namely nitrifying bacteria and heterotrophic bacteria. The heterotrophs represent the 
microorganisms responsible for carbonaceous removal. Nitrifying bacteria (Nitrosomonas 
and Nitrobactor) are responsible for the oxidation of ammonia to nitrite and nitrate 
nitrogen.  The optimum pH is 7.5 to 8.6 for Nitrosomonas and 6.0 to 8.0 for Nitrobactor.  
The range of free ammonia concentration affecting to Nitrosomonas had been investigated 
by some researcher is around 7 to 150 mg/L and Nitrobactor is around 0.1 to 1.0 mg/L 
(Barnes, 1983; Abeling and Seyfried, 1992). It was observed by Blum and Speece (1992) 

background image

 

 76  

that the nitrifying bacteria are more sensitively inhibited by a given concentration of 
chemical toxicant than the heterotrophic bacteria. Thus, failure of the nitrifying process 
would occur before the carbonaceous removal process. Blum and Speece (1992) also 
reported that Nitrobactor exhibited approximately the same toxicity as aerobic 
heterotrophs. Thus, to prevent the interference of the nitrifying system in the toxicity test, 
70 mg/L of Nitrogen as NH

3

-N was added to suppress nitrification (Liebeskind, 1999) in 

the bacterial system. 

 
The major biokinetic parameters found in the two systems namely, the bacterial and 

yeast sludge are expressed in Table 4.3 and 4.4, respectively. The concentration of free 
ammonia produced in the system was also measured using a dissociation equation of 
ammonium salt into ammonia and hydrogen ion (Ortiz, et al., 1997). The formulae used for 
measuring the free ammonia in given below: 
 
                                                                           

[NH

3

-N]  =  17  [NH

4

+

-N] 10

 pH

 

         Eq. 4.1 

 

14   

exp [ 6344 / ( 273 + T ) ] + 10

 pH

 

 

 

The inhibition was found to be much higher in the bacterial sludge than that of the 

yeast sludge. The probable reason for this could be the low oxygen uptake of 0.0030 mg 
O

2

/mg VSS. h compared to that 0.0078 mg O

2

/mg VSS. h of the bacterial culture even at 

an ammonium chloride concentration of 70 mg/L. The complete biokinetic parameters 
measured for the yeast and bacterial system are presented in Table C-3 and C-4 of 
Appendix C. The free ammonia nitrogen concentration in the bacterial sludge was found to 
reach a maximum of 20 mg/L whereas that found in yeast sludge was 0.013 mg/L. It has 
been found that the ammonia concentration of 31 to 49 mg/L can cause toxicity (Cheung, 
et al., 1997) and at a concentration of 200 mg/L can adversely affects the sludge properties 
(Robinson and Maris, 1985). The toxicity of the compound also depends upon the nature 
and the composition of the waste. This could be the reason for relatively high toxicity of 
the ammonia in the landfill leachate. In a yeast based biological system, it was found that a 
free ammonia concentration of 11 mg/L would inhibit the growth of Candida utilis where 
the ammonium nitrogen concentration was 350- 520 mg/L (Ortiz, et al., 1997). Relatively 
low toxicity in the leachate studies could be attributed to the low pH. 

 

Table 4.3 Effect of Free Ammonia Concentration on Yield Coefficient and the Specific 
Growth Rate of the Bacterial Sludge 
 

NH

4

Cl 

(mg NH

4

-N/L) 

Free NH

3

 

(mg NH

3

-N/L) 

(mg VSS/mg COD) 

µ 

(d

-1

70 0.44-0.70 0.39  0.093 

1000 6.36-10.05  0.38 

0.055 

1500 9.54-15.07  0.35 

0.046 

2000 12.72-20.10  0.29 

0.031 

 
 
 
 
 
 

background image

 

 77  

Table 4.4 Effect of Free Ammonia Concentration on Yield Coefficient and the Specific 
Growth Rate of the Yeast Sludge 
 

NH

4

Cl 

(mg NH

4

-N/L) 

Free NH

3

 

(mg NH

3

-N/L) 

(mg VSS/mg COD) 

µ 

(d

-1

70 0 0.50 

0.095 

1000 0.003-0.006  0.49 

0.089 

1500 0.005-0.010  0.48 

0.087 

2000 0.006-0.013  0.49 

0.090 

 
 

The inhibition of the bacterial and the yeast culture with increasing concentration is 

expressed in Figure 4.9. The inhibition of the bacterial culture increased from 27 to 37% 
with corresponding increase in ammonium chloride concentration from 1,000 to 2,000 
mg/L. The inhibition of the yeast culture was found to be around 6% even at an ammonium 
chloride concentration of 2,000 mg/L.  

 
 

 

Figure 4.9 Inhibition of the Yeast and Bacterial Culture with Increasing Ammonium  

      Chloride Concentration 
 

Another reason that would contribute to the resistance of the yeast sludge to the 

ammonia toxicity could be the ammonium and free ammonia concentration. It is well 
known that the molecular ammonia is toxic but not the ammonium ion. The relationship 
between the ammonium ion and ammonia is pH dependent. The ammonium ion in the 
wastewater is usually is in equilibrium with the ammonia and hydrogen ion concentration. 
The equation of which is expressed as follows: 

 
 

R

2

 = 0.9546

R

2

 = 0.9592

0

20

40

60

80

100

0

500

1000

1500

2000

2500

3000

3500

NH

4

Cl Concentration (mg/L)

%

 I

nhi

bi

tio

Mixed bacteria
Mixed yeast

background image

 

 78  

NH

3

   +    H

+

   

 

 

NH

4

+

 

 
 
At low pH, when H

is high, the equilibrium shifts towards the right direction. This 

results in low ammonia concentration. The low percentage inhibition in the yeast system 
could be attributed to this, as the operation pH of the yeast system is around 3.5 to 3.8 
compared to 6.8 to 7.0 in the bacterial sludge.  
  

Though, the ammonia concentration did not affect the yeast sludge much, it was 

found to inhibit the microbial growth in the bacterial system. As the ammonium is present 
in high concentration in the leachate, leaching becomes necessary prior to further 
biological treatment. Thus, ammonia stripping was done to ensure better efficiency of the 
biological system and prevent the inhibition of the toxic compounds to the organisms. 
 
(2) Lead Toxicity 
  

Many researches have shown the presence of toxic compounds in many landfill 

leachate (Brown and Donnelly, 1988; Baun, et al., 1999). Other studies have shown that 
leachate from a municipal solid waste landfill can be more toxic than the leachate from the 
hazardous waste landfill (Brown and Donnelly, 1988; Schrab, et al., 1993; Clement, et al., 
1996). Even though large scale disposal of hazardous toxic metals is no longer practiced, 
but small generators such as small businesses and households do continue to dispose 
hazardous chemicals in the municipal landfills (Brown and Donnelly, 1988). One of such 
compounds is the lead, which is present in the landfill leachate. The source of lead is 
probably from plumbing fixtures in the individual homes and other lead-containing 
products (such as leaded solder, battery, glass, PVC, and small lead items) which are 
disposed of as waste.  
 

Though, lead is found at a concentration lower than 1 mg/L (Chian and DeWalle, 

1976; Ehrig, 1983; Keenan, et al., 1984; Robinson and Maris, 1985; Robinson, 1992), an 
increased concentration of the lead can pose failure of the biological systems. To find out 
the effect of the increasing lead concentration on the activated sludge, toxicity studies was 
done with it using lead nitrate as a lead source. The lead nitrate in the bacterial system was 
varied from 20-100 mg/L compared to 2-25 mg/L in the yeast system. The lead nitrate used 
in the yeast system was lower than that of the bacterial system due to the reason that at 
lower pH, lead would easily dissociate as a free ion (Cui, et al., 2000). The lead toxicity 
was done as described in section 3.4.2. The biokinetic parameters for the lead toxicity 
studies in bacteria and yeast leachate is given in Table C-5 and C-6 of Appendices C. The 
substrate concentration in the study was similar to that of the ammonia toxicity study.  
 

The substrate utilization by the yeast and bacterial sludge is presented in Table 4.5. It 

is found that the substrate utilization of the bacterial system is higher than that of yeast 
sludge. As the soluble lead concentration increased from 0 to 10.98 mg/L, the oxygen 
utilization rate decreased from 0.519 mg O

2

/mg VSS.h to 0.075 mg O

2

/mg VSS.h. The 

percentage inhibition at high concentration was found to be 85%. The inhibition effects of 
the lead on the bacterial and yeast system is expressed in Figure 4.10 and 4.11, respectively. 
 
 
 
 

background image

 

 79  

Table 4.5 Substrate Utilization by the Yeast and Bacterial Sludge 
 

Bacteria Yeast 

Soluble Pb in 

Sample (mg/L) 

Oxygen Utilization  

(mg O

2

/mg VSS.h) 

Soluble Pb in 

Sample (mg/L) 

Oxygen Utilization  

(mg O

2

/mg VSS.h) 

0.00 0.519 0.00 0.071 
2.38 0.233 1.15 0.042 
4.11 0.233 1.41 0.042 
5.23 0.158 1.98 0.032 

10.98 0.075  2.10  0.017 

 
 

Figure 4.10 Inhibitory Effect of Lead in Bacterial Sludge 

 

The soluble lead concentration in the yeast culture was from 0 to 2.10 mg/L 

concentration. The oxygen utilization rate of the yeast sludge decreased from 0.071 to 
0.017 mg O

2

/mg VSS.h. The inhibition of the yeast system was 76% at a soluble lead 

concentration of 2.10 mg/L. The percentage of inhibition of yeast sludge was comparable 
to that of the bacterial sludge. The soluble lead concentration of 2.38 mg/L in the bacterial 
system showed 55% inhibition.  In the yeast system, 50% inhibition occurred at a soluble 
lead concentration of 1.50 mg/L. The toxicity effect is close to that reported by Cui, et al
(2000), where it is said that toxicity effect on yeast occurs at concentration of 1 mg/L.  
 

0

20

40

60

80

100

0

2

4

6

8

10

12

Concentration of Soluble Lead (mg/L)

% Inhibition   .

background image

 

 80  

 

 

Figure 4.11 Inhibition Effect of Lead in Yeast Sludge 

 

In the bacterial system, 50% inhibition occurred at a concentration approximately 3 

mg/L. The toxicity effects to both marine and freshwater invertebrates have been recorded 
at the concentrations range between 0.5 and 5.0 mg/L (Oladimeji and Offem, 1989), 
whereas it was between 2 and 6 mg/L for the activated sludge process (Madoni, et al., 
1996). Madoni, et al. (1999) also found that the microbial activity in an activated sludge 
plant treating wastewater containing 3.5 to 9.2 mg/L of soluble lead could be adversely 
affected. The higher concentrations of soluble lead applied in the experiments point out the 
higher resilience of bacteria in the presence of lead. 
 
4.3   Application of Yeast and Bacteria Based Membrane Bioreactors in Leachate 

Treatment 
 
Landfill leachate treatment is a complex task due to the highly variable waste 

landfilled, the type and design of the landfill, landfill age and climatic and seasonal 
variations in different regions. Hence, rather than recommending treatment options based 
on specific factors, it would be necessary to consider landfill age as a unique case. 
Medium-aged landfill leachate is characterized by a high COD and ammonia content with 
a relatively lower BOD. Leachate treatment systems in recent years are sophisticated, 
reliable and are able to consistently treat leachate to keep up the specific discharge 
standards (Robinson, 1999). One such treatment technique is the membrane bioreactors. 
Membrane reactor in recent years has been proved to be effective and economically 
feasible for treatment of various kinds of toxic wastewaters. Moreover, industrial 
utilization of the MBR has worked successfully for treating complex wastes like landfill 
leachates and cosmetic wastewaters (Manem, 1993; Mandra, et al., 1995). In the present 
study, initially performance of the membrane bioreactors have been evaluated without any 
pre-treatment based on various factors such as removal efficiency of TKN and COD, 
membrane fouling, etc. 

0

20

40

60

80

100

0.0

0.5

1.0

1.5

2.0

2.5

Concentration of Soluble Lead (mg/L)

% Inhibition    .

background image

 

 81  

4.3.1  Initial Membrane Resistance 
 

Prior to starting up the experiment, it is necessary to measure the membrane 

resistance to understand the filtration capacity of the membrane and the change in the 
resistance after fouling. The linear flux variation along with the applied pressure was 
obtained by varying the flow rate. The detailed experimental data is presented in Table D-1 
and D-2 of Appendix D for the bacterial based membrane bioreactor (BMBR) and yeast 
based membrane bioreactor (YMBR), respectively. The graph showing linear flux of the 
membrane reactors are represented in Figure 4.12. Membrane permeate flux was measured 
by weighing permeate with the electronic balance. Initial membrane resistance was 
determined from the relationship between flux and applied pressure as follows: 
 

 

Figure 4.12 Variation in Transmembrane Pressure with Permeate Flux (a) YMBR and 

     (b) BMBR 

y = 0.1609x + 1.0378

R

2

 = 0.9984

0

5

10

15

20

25

30

0

50

100

150

200

Flux (L/m

2

.h)

P

re

ss

ure

 (k

P

a)

 

(a) 

y = 0.1521x + 0.5234

R

2

 = 0.9988

0

5

10

15

20

25

30

0

50

100

150

200

Flux (L/m

2

.h)

Pressu

re (kPa

)

 

(b) 

background image

 

 82  

 

                                            J  =   ∆P                                                  Eq. 4.2  

µR

t

 

  
Where; 

J  = Permeate flux (L/m

2

.h) 

∆P  

= Applied pressure (kPa) 

µ   = Dynamic viscosity (N.s/m

2

R

t

 

= Total resistance for filtration or Hydraulic resistance of clean     

             membrane (m

-1

 

The membrane resistance (R

m

) of the YMBR was found to be 6.66 x 10

11

 m

-1

 and 

that of BMBR was found to be 6.29 x 10

11

  m

-1

. The membrane used in the study had a 

surface area of 0.42 m

2

 and pore size of 0.1 µm. Both the membranes had a similar pore 

size and almost the same membrane resistance. The membrane resistant is important as 
with increasing membrane operation, the membrane resistance tends to increase the 
transmembrane pressure, which after a certain limit decreases the flux to a great extent. 
During this stage when the transmembrane pressure reaches a maximum, the membrane is 
said to be fouled. The effect of the membrane resistance prior to and after fouling has also 
been studied which would be discussed in later part of this chapter.  
 
4.3.2  Optimization of HRT in Terms of Membrane Bioreactor Treatment Efficiency 
 
(1) COD Removal Efficiency 
 

The influent COD concentration was maintained around 7,000 to 9,000 mg/L, and 

the volumetric loading rate was gradually increased from 6.7 to 17.9 kg COD/m

3

.d by 

decreasing HRT from 24 h to 12 h with 4 h decrement. A detailed tabulation of the results 
is given in Table E-1 and E-2 of Appendix E for the BMBR and YMBR systems, 
respectively. The increase in organic loading in terms of COD concentration and change in 
HRT is presented in Figure 4.13. As a real leachate from the transfer station and sanitary 
landfill was used, fluctuations in the feed could not be avoided.  In all experimental runs, 
the MLSS of both the systems were maintained around 10,000 to 12,000 mg/L and DO 
concentration of above 2.0 mg/L. Figure 4.14 and 4.15 illustrates the MLSS concentration 
and pH, respectively in both the membrane bioreactors. The fluctuations in the pH of the 
BMBR reactor could be due to the products if the degradation taking place within the 
system. 

 
While treating the medium-aged landfill with membrane bioreactors, the effluent 

COD concentration fluctuated with that of the influent concentration. The influent and 
effluent COD concentration in the BMBR and YMBR are presented in Figure 4.16. It was 
observed that the average COD removal efficiency of the YMBR was slightly higher than 
that of the BMBR for varied HRT, though the difference was just marginal. The reason for 
the increased run period at 16h HRT was the absence of significant improvement in the 
treatment performance in terms of COD removal. In a study conducted by Sun, et al., 2002 
found similar results. When an influent wastewater with 2,400 mg/L COD was treated 
using a submerged MBR, it was found that a change in HRT from 3 to 6 days did not 
significantly affect the performance. The removal efficiency just changed from 92 to 93%. 
A high COD removal of the high strength wastewater could be due to the increased HRT 

background image

 

 83  

when compared with the present study. Figure 4.17 shows the efficiency of COD removal 
for both YMBR and BMBR systems for various HRT throughout the run period. 

 

 

Figure 4.13 Variation in Organic Load with HRT 

 
 

 

Figure 4.14 Variation in MLSS in the MBR Systems 

0

5

10

15

20

25

30

35

40

1

22

48

72

94

119

145

173

Time (days)

HRT (h)

6

10

14

18

22

COD O

rganic Lo

ad  (kg/m

3

.d)

HRT

Organic Load

 

0

2000

4000

6000

8000

10000

12000

14000

16000

0

20

40

60

80

100

120

140

160

180

Time (days)

MLSS (mg/L)

BMBR
YMBR

 

background image

 

 84  

 

 
 

Figure 4.15 Variation in pH in the MBR Systems 

 
 

 

Figure 4.16 COD Concentration in the Influent and Effluent in the BMBR and YMBR 

    at Different HRT 

0

1

2

3

4

5

6

7

8

9

10

0

20

40

60

80

100

120

140

160

180

Time (days)

pH

Feed

BMBR

YMBR

 

0

2000

4000

6000

8000

10000

12000

1

22

48

72

94

119

145

173

Time (days)

CO

D

 (

m

g/

L)

0

5

10

15

20

25

30

HR

T

 (

h)

Influent COD

YMBR

BMBR

HRT

background image

 

 85  

 

Figure 4.17 COD Removal Efficiency in the BMBR and YMBR at Different HRT 

 

The average COD removal efficiency in YMBR system was 63% when HRT 

ranged from 16 h to 24 h, whereas in BMBR system, the average COD removal efficiency 
was 60% at HRT from 16 h to 24 h as listed in Table 4.6 and Table 4.7. When municipal 
wastewater with 300 mg/L COD was treated, a 97% of removal could be achieve (Fan, et 
al
., 1996). At HRT of 12 h, the average COD removal efficiency in YMBR and BMBR 
was to 60% and 51%, respectively. The decrease in removal efficiency in the bacterial 
system at a lower HRT was more apparent, which could be due to the presence of 
ammonia in the leachate posing toxicity to the bacterial culture.  This aspect is also 
supported by the biokinetic studies, which states that the ammonia inhibits bacterial cells to 
a greater extent than the yeast cells. 
 

The COD removal in 12 h HRT in both the reactors was very low compared to that in 

other HRTs. In addition to a better COD removal efficiency, YMBR was more stable than 
BMBR. As, the yeast system did not show a significant improvement compared to bacteria 
in terms of COD removal, it could be suggested that further investigations are required to 
conclude.  
 
Table 4.6 COD Removal Efficiency in YMBR System at Different HRT 
 

COD Removal (%) 

Values 

 

HRT 24 h 

HRT 20 h 

HRT 16 h 

HRT 12 h 

Maximum 69  70 75 72 
Minimum 58  60 59 50 
Average  63  64 66 60 
Std. 

Dev. 4  4 6 8 

0

10

20

30

40

50

60

70

80

90

0

20

40

60

80

100

120

140

160

180

Time (days)

COD

 Removal Effic

iency 

(%)

 

8

10

12

14

16

18

20

22

24

26

HRT (h)

BMBR

YMBR

background image

 

 86  

Table 4.7 COD Removal Efficiency in BMBR System at Different HRT 
 

COD Removal (%) 

Values 

 

HRT 24 h 

HRT 20 h 

HRT 16 h 

HRT 12 h 

Maximum 66  76 76 56 
Minimum 53  50 52 46 
Average  60  65 62 51 
Std. 

Dev. 6  9 6 4 

 
 

To further verify the treatability in the yeast and bacterial system, the F/M ratio and 

the COD removal with MLSS were compared. Figure 4.18 represents the organic removal 
with variation in F/M ratio. It indicated that while comparing the BMBR, YMBR obtained 
higher specific COD removal rate at F/M ratio greater than 0.85 mg COD/mg SS.d.  It also 
showed that the COD removal rate of YMBR is higher than that of BMBR at the same F/M 
ratio. Thus, it could be said that though the performance in terms of removal efficiency 
cannot be compared, in terms of total organic removal for available biomass in the YMBR 
system is better.  
 
 

 

Figure 4.18 Variations in COD Removal Rate as a Function of F/M Ratio 

 

As the loading rate was progressively increased through different stages, COD in the 

effluent in the yeast ranged from 1,860 to 4,270 mg/L and from 1,765 to 4,560 mg/L in the 
bacterial system.  
  
 
 

y = 0.5993Ln(x) + 0.6183
R

2

 = 0.937

y = 0.7156Ln(x) + 0.6578
R

2

 = 0.8766

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

F/M Ratio (d

-1

)

CO

D

 Re

m

ov

al

 Ra

te

 

(m

g C

OD/

m

SS

.d

)

BMBR

YMBR

BMBR: 

YMBR:  

background image

 

 87  

(2) TKN Removal Efficiency 
  

Prior to optimizing the HRT in the MBR systems, TKN removal in the leachate was 

also studied. A TKN concentration of about 2,000 mg/L was used. The graph showing 
influent and effluent TKN concentration in the BMBR and YMBR systems are presented 
in Figure E-1 of Appendix E. For the yeast system, the pH range was controlled around 3.6, 
to enhance yeast growth and prevent bacterial contamination. In the acidic pH, the 
ammonium compounds tend to remain in the form of ammonium ion rather than as 
ammonia. Thus, it could be said that the free ammonia concentration in the YMBR would 
be less than 1.0 mg/L. The free ammonia in the BMBR was around 12 to 20 mg/L (Section 
4.2.3) due to the pH range 6.8-7.0.  

 

Figure 4.19 shows TKN removal efficiency for both YMBR and BMBR systems at 

different HRT. There was not any significant difference, though the YMBR was 
marginally better than BMBR. Average TKN removal efficiency in YMBR and BMBR 
systems was from 19% to 29% and 14% to 25%, respectively as given in Table 4.8 and 4.9. 
At a HRT of 12 h, the average TKN removal efficiency in YMBR and BMBR was as low 
as 18% and 14%, respectively, similar to low COD removal.  

 

 

 

 

 

Figure 4.19 TKN Removal Efficiency in the YMBR and BMBR with HRT 

 
 
 
 
 
 
 

0

10

20

30

40

50

60

70

80

90

100

1

22

48

72

94

119

145

173

Time (days)

TKN

 Remov

al  (%)   .

10

12

14

16

18

20

22

24

HRT (h)   

BMBR

HRT

YMBR

background image

 

 88  

Table 4.8 TKN Removal Efficiency in YMBR System  
 

TKN Removal (%) 

HRT (h) 

24 20 16  12 

Maximum 28  20  36  23 
Minimum 28  18  15  11 
Average 28 19 29 18 
Std. Dev. 

 
Table 4.9 TKN Removal Efficiency in BMBR System  
 

TKN Removal (%) 

HRT (h) 

24 20 16  12 

Maximum 26  35  35  19 
Minimum 24  13  15  10 
Average 25 22 25 14 
Std. Dev 

10 

 

 

Along with TKN Removal, the total ammonium content was also measured. The 

influent ammonium concentration was around 1,700 mg/L. The ammoniacal nitrogen 
contributed to about 85% and above of the total organic nitrogen. The effluent ammonium 
concentration in the YMBR and BMBR systems was 1,235 and 1,285 mg/L, respectively. 
The ammonium removal concentration was also found to be very low with 18% and 20% 
in the BMBR and YMBR system, respectively. The ammonium concentration contributed 
to 85-90% of the total nitrogen. The nitrite and nitrate concentrations (NO

2

-

 and NO

3

-

) in 

both YMBR and BMBR effluents were found to be very low. NO

2

and

 

NO

3

-

 concentration 

in the YMBR and BMBR effluent ranged from 0.8 to 6.4 mg/L and less than 1.0 mg/L, 
respectively. The probable reason for the absence of a notable range of nitrate and nitrite 
could be due to the absence of nitrifying bacteria, namely the Nitrosomonas and 
Nitrobacter. The inhibition of Nitrosomonas could be due to the free ammonia present in 
leachate as suggested by many researchers, that around 7 to 150 mg/L would affect the 
Nitrosomonas and a concentration of around 0.1 to 1.0 mg/L would affect the Nitrobacter 
(Barnesand and Bliss, 1983; Abeling and Seyfried, 1992). This would have therefore 
affected the nitrification process, as a result of which, the leachate should be pre-treated to 
reduce ammonia concentration.  
 

Along with the nitrogen content, the phosphorus content in the leachate was also 

measured. The average phosphorus concentration found in the leachate was 68 mg/L. The 
COD: P ratio was also calculated to find out the nutrient deficiency in the leachate. The 
COD: P ratio in the leachate was 100:0.85. Though, the leachate was said to be marginally 
phosphorus deficient, it did not adversely affect the COD removal efficiency in the MBR 
systems. This was tested with and without addition of polyphosphate in the treatment 
system. Further, many biological treatment systems have been used for treating leachate 
even with a COD:P as low as 100.02 (Pohland and Harper, 1985). The phosphate removal 
in both the reactors was approximately 50%.  
 

During the operation of membrane bioreactors, a frequent problem faced was 

foaming. Antifoam addition was used to prevent foam development (Praet, et al., 2001). 
 

background image

 

 89  

As there was no significant improvement when the HRT was increased from 16 to 24 

h in terms of COD removal, further investigations were done at these two HRT, with 16 h 
HRT followed by 24 h HRT. 

 

4.3.3  Membrane Fouling and Membrane Resistance 
 

The membrane fouling is the result of accumulation of rejected particles on the top of 

the membrane (external fouling), or deposition and adsorption of small particles or 
macromolecules at the pores or within the internal pore structure (internal fouling) of the 
membrane (Guell, et al., 1999). The processes that contribute to the fouling are varied. 
They include adhesion of the colloidal matters and macromolecules on the external and 
internal surface, growth and adhesion of biofilms on the membrane surface, precipitation 
of solved matters, aging of the membrane, etc (Gunder, 2001). Because of the complex and 
diverse relationships, it is not possible to localize and define fouling clearly. The adverse 
effects of the membrane fouling is the reduction of the permeate flux.  
 

In the present study, a constant flux was maintained in the membrane bioreactors. 

The resistance of the membrane influences the permeate flux. To maintain a constant flux, 
the flow rate was increased correspondingly by adjusting the suction pump. The rapid 
membrane fouling is indicated by a sudden increase in the transmembrane pressure. As a 
high transmembrane pressure is a result of the membrane fouling process, it was used as a 
parameter indicating requirement of cleaning. The membrane in the membrane reactors 
were cleaned when the transmembrane pressure difference increased significantly. The 
membranes were cleaned before it reached the maximum pressure to prevent damage to the 
membrane operation. The transmembrane pressure difference of the YMBR and BMBR 
systems is given in Figure 4.20. The detailed results are given in Table E-3 and E-4 of 
Appendix E. Though the two reactors, with bacterial and yeast culture did not show much 
difference in the performance, the yeast reactor showed an added advantage of lower 
membrane fouling and thus, longer membrane life. 
 

The cleaning was done by first flushing the membrane with tap water to remove the 

cake layer from the membrane surface. Later, a 3% sodium hydroxide solution was filtered 
through the membrane and then, washed with tap water. Finally, 1% solution of nitric acid 
was filtered through the membrane followed by tap water. This cycle was repeated until 
the membrane resistance was almost equal to the initial membrane resistance. 

 
The frequency of cleaning was greater in bacterial membrane bioreactor than the 

yeast membrane bioreactor. The frequency of membrane fouling is presented in the Table 
4.10 for both the systems. The membrane resistance after cleaning is presented in Table 
4.11. The detailed calculation is summarized in Table D-3 and D-4 and Figure D-1 and D-
2 of Appendix D. The bacterial system was first cleaned after 63 days of operation while 
the yeast based system was cleaned after 80 days. It could be said that the membrane with 
yeast reactor could be operated 27% more than the bacterial system. Further, in a total of 
181 days of operation of the MBR systems, the BMBR was cleaned five times compared to 
three times in the YMBR system. The operating time of the yeast membrane was about 1.3 
times longer than the bacteria membrane.  

 

background image

 

 90  

 

 

Figure 4.20 Cleaning of membranes in the YMBR and BMBR system in relation to TMP 

 
 
 
Table 4.10 Membrane Cleaning Frequency in the MBR Systems 
 

Days after Membrane Operation 

Membrane Cleaning 

BMBR YMBR 

1 63 

80 

2 85 

101 

3 126 

154 

4 143 

5 167 

 
Table 4.11 Membrane Resistance in the MBR Systems 
 

Membrane Resistance (m

-1

) after Cleaning 

Cleaning Frequency 

BMBR YMBR 

Initial 6.29×10

11

 6.66×10

11

 

1 1.79×10

12

 5.64×10

11

 

2 1.02×10

12

 3.31×10

12

 

3 1.13×10

12

 1.31×10

12

 

4 2.81×10

12

 - 

 
 
 

0

10

20

30

40

50

60

70

0

20

40

60

80

100

120

140

160

180

Time (day)

Tran

s-memb

rane Pressure    

(kPa)

10

14

18

22

26

HRT (h)

YMBR
BMBR
HRT

background image

 

 91  

The probable reason for frequent fouling in bacterial system than yeast system could 

be EPS formation. The EPS formation in reactor was greater in bacterial system than in the 
yeast system. The mechanism of biofilm development in the YMBR is different from that 
of the BMBR. In the YMBR, the yeasts attach itself physically to the membrane surface 
during filtration instead of getting trapped in a matrix as the bacterial cell. The yeast cells 
usually attach together by means of physical interwinding of mycelia or pseudomycelia 
(Nishihara ESRC Ltd., 2001).  
 

Another probable reason for frequent fouling in the bacterial based membrane 

bioreactor could be the size and nature of bacterial cells in comparison with the yeast cells. 
The bacterial cells have a size of 0.5 to 1.0 µm diameter for the spherical shaped, and 0.5 
to 1.0 µm wide and 1.5 to 3.0 µm long for the cylindrical (rods) shaped bacteria whereas 
the size of yeast is around 5 to 30 µm length and 1 to 5µm width. The large yeast cells are 
said to form a dynamic membrane on the top of the original membrane that is capable of 
entrapping some of the protein aggregates. This may enhance the recovery of the viscous 
aggregates and thus slowing down the fouling layer on the surface of the primary 
membrane. Thus, the yeast interactions slow down the pore blocking by capturing a 
significant fraction of protein aggregates (Guell, et al., 1999). In addition to this low 
operating pH, poor adhesion capacity and low viscosity could be other reasons for low 
fouling frequency in the yeast based MBR systems (Dan, 2002). Thus, yeast sludge can 
reduce membrane fouling rate more significantly than the bacterial sludge.  Therefore, it 
could be suggested that the use of yeast system in the membrane bioreactor could be 
beneficial as it has the potential to reduce the operating and maintenance costs of the 
treatment system. 
 
4.4   Application of Yeast and Bacteria Based Membrane Bioreactors in Ammonia  

Stripped Leachate Treatment 

 

Leachate with high load of refractory compounds, low value of BOD/COD ratio, 

heavy metals and high concentration of nitrogen compounds, especially ammoniacal 
exhibit difficulty in treatment (Dichtl, et al., 1997). Biological treatment becomes difficult 
when the regarded leachate is inhibitive, toxic and older-less biodegradable (Geenens, et 
al
., 1999). Due to the presence of high ammonium content in the leachate, it could be 
suggested that removal of ammonium is required prior to biological membrane treatment. 

 

4.4.1  Ammonia Stripping Studies 
  

The toxicity of ammonia-bearing waste to bacteria, algae, zooplankton and fish is a 

universal phenomenon. Ammonia has been shown to be toxic in oxidation ponds where 
high free ammonia and pH inhibit photosynthesis (Abeliovich and Azov, 1976). The 
activated sludge process has also been shown to fail due to the ammonia toxicity and 
phosphorous limitation (Keenan, et al., 1984). In addition, Cheung, et al. (1993) through 
algal toxicity suggested that ammonia concentration as ammoniacal nitrogen is a major 
factor governing the toxicity of landfill leachate. Along with this, it was difficult to 
overcome the ammonia toxicity and to treat the leachate containing a low COD/N ratio 
with biological process (Keenan, et al., 1984; Robinson and Maris, 1985; Cheung, et al., 
1997). Therefore, there is a need to reduce the concentration of ammonia in the leachate 
below inhibitory level for the success of biological systems in proper leachate treatment. 
As ammonia stripping is simple and less expensive than other physico-chemical methods 

background image

 

 92  

available, and appears to be cost effective pretreatment option for landfill leachate (Cheung, 
et al., 1997), it was used in the present studies. 
 

 

The initial ammoniacal nitrogen in the simulated landfill leachate proposed in the 

study was around 1,600-1,800 mg/L. Ammonia stripping studies were done in two stages- 
one in the laboratory scale to optimize the parameters to be used for ammonia studies prior 
to MBR process and secondly, in the pilot scale studies to confirm the results of the 
laboratory studies in a larger scale. The laboratory scale studies were done with leachate 
volume of 2 L whereas pilot scale studies were done with leachate volume of 40 L. 
 

Firstly, the pH for the ammonia stripping was standardized using a velocity gradient 

of 1,530 s

-1

 with a contact time of 2 h. The alkaline pH facilitates the formation of the free 

ammonia molecule in comparison with the ammonium ion, thus making it easy to remove 
ammonia. For this reason, the pH was adjusted to alkaline condition. The pH was adjusted 
to 9, 10, 11, and 12 using sodium hydroxide solution. The variation in removal efficiency 
was tested for three samples with different concentrations to eliminate the standard error in 
the analysis. It was found that the ammonia removal efficiency significantly increased 
when pH was increased from 10 to 11 or 12. The detailed results are presented in Table F-1 
of Appendix F. The removal efficiency was 38-45 % at pH 11 compared to 16-23% at pH 
9 and 24-30% at pH 10 (Figure 4.21). The difference between the removal efficiency at pH 
11 and 12 was around 5%, which was considered not much significant. Thus, it could be 
said that the effective pH for the ammonia stripping would be around 11-12. The results of 
ammonia stripping were similar to other studies done in municipal landfill leachate 
(Cheung, et al., 1997; Ozturk, et al., 1999).  
 

After standardization of pH, the velocity gradient and the contact time were 

standardized using leachate samples with pH 11-12. The ammonia concentration and 
removal efficiency at different contact time and the velocity gradients are given in the 
Table F-2 to F-4 of Appendix F. The contact time for the ammonia removal was varied 
from 2 to 6 h. The velocity gradient used in the study was 1,530, 2,850 and 4,330 s

-1

which were varied along with the contact time. Figure 4.22 elaborates the removal 
efficiency and ammonia concentration with varying contact time and velocity gradient for 
the initial leachate ammonia concentration of 1, 380 mg/L.   
 

The summary of the results for different samples at varied contact time and velocity 

gradient is summarized in Table 4.12. The rate of ammonia removal is directly 
proportional to the velocity gradient or the volume of air diffused through the liquid. The 
main mechanism used for ammonia removal was simple mechanical mixing.  It was found 
that when the velocity gradient was increased from 2,850 s

-1

 to 4,330 s

-1

, the removal 

efficiency did not improve much with 2, 4 and 6 h contact time. Therefore, it could be 
concluded that 2,850 s

-1

 was the optimum velocity gradient for ammonia stripping. The 

ammonia removal efficiency was found to be between 88 and 95% at 4 h contact time at 
velocity gradient of 2,850 s

-1

. Though at 6 h contact time, the ammonia removal efficiency 

improved further, the difference in ammonia removal between 4 and 6 h was not 
significant.  Thus, the standard velocity gradient and the contact time were taken as 2,850 
s

-1

 and 4 h, respectively. At optimum conditions, the system consumed NaOH of 12.5 

kg/m

3

 and produced sludge at a rate of 80-100 L/m

3

 
 

background image

 

 93  

 

 

Figure 4.21 Variation in the Ammonia Removal Efficiency with pH 

 

 

Figure 4.22 Ammonia Removal Efficiency with Varying Velocity Gradient and pH 

0

200

400

600

800

1000

1200

1400

1600

0

1

2

3

4

5

6

Contact Time (h)

Ammonia Concentration   

 (m

g/

L)

0

10

20

30

40

50

60

70

80

90

100

R

emova

l Effec

iency   

(%)

Control

1530 s-1

2850 s-1

4330 s-1

 

R

2

 = 0.9753

0

10

20

30

40

50

60

8

9

10

11

12

13

pH

Ammonia Removal   

(%)

1,106 mg/L
1,366 mg/L
1,380 mg/L

background image

 

 94  

Table 4.12 Variation in Ammonia Removal Efficiency 
 

Ammonia Removal (%) 

Contact Time (h) 

Velocity Gradient 

(s

-1

2 4  6 

0 28-31 

37-46 

47-51 

1,530 61-66 

84-86 

88-93 

2,850 69-74 

88-95 

96-98 

4,330 71-76 

89-95 

96-98 

 

While Diamadopoulos, 1994 did the ammonia removal experiments using air 

stripping at pH 11.5 with air flow rate 2-3.5 L air/L in leachate, he could achieve 95% 
ammonia removal after a time period of 24 h. The removal efficiency of air stripping was 
similar with the present study, with the advantage that the present study required a lower 
time period. The main role of agitation was to create turbulence sufficient enough in the 
free leachate surface, to increase the surface area for ammonia removal (Smith and Arab, 
1988). In this case, the ammonia desorption would be less important than the surface area 
similar to studies done by Cheung, et al. (1997). This could be the probable reason for the 
efficient removal at a lower contact time. Another added advantage is that the present 
process can withstand changes in the volume and leachate concentration in comparison 
with the nitrification and denitrification processes for ammonia removal. It could also be 
said that ammonia stripping is an appropriate option for pre-treatment of leachate even in 
terms of cost-effectiveness (Cheung, et al., 1997).  
 

In the second stage of ammonia stripping studies as mentioned above, the pilot-scale 

studies were done to confirm the results obtained from laboratory-scale studies. The pilot 
scale study was conducted with leachate volume of 40 L at pH 11-12 and velocity gradient 
of 2,850 s

-1

. The summary of the pilot scale studies are given in Table F-5 of Appendix F. 

The contact time was varied from 1 to 5 h. At each hour, the removal efficiency was 
measured. The average removal efficiency was found to be 89% at 5 h contact time. From 
the pilot scale studies, similar removal efficiency was expected at 4 h. Pilot scale results 
could be taken as a representative results as the standard error decreased with increasing 
volume. When Yangin, et al. (2002) worked on ammonia stripping of domestic wastewater 
mixed with leachate, it was found that 89% ammonia could be removed from the UASBR 
effluent containing an ammonium concentration of 1,000-2,000 mg/L. So, with the pilot 
scale study, we can be assured that the optimum condition persists at 5 h contact time. To 
verify this result again, with varying leachate ammonia concentration, the experiment was 
conducted and the average ammonia removal efficiency of 86% could be obtained with 
standard deviation of 3 mg/L. The results of this experiment are given in Table F-6 of 
Appendix F. 
 

The mechanism in ammonia stripping could be due to the ammonia desorption from 

the surface of the liquid leachate into the gaseous phase. It has also been said that the mass 
transfer of ammonia from liquid to air is proportional to the concentration of ammoniacal 
nitrogen in the solution and is a first order reaction (Srinath and Loehr, 1974). However, 
this could not be proved significantly in the present study, as only a range of ammoniacal 
nitrogen in the leachate was used in the experiment. Another aspect to be discussed in the 
study would be biological removal of ammonia in the aeration process through agitation. It 
was clear that the ammonia was removed through stripping rather than biological activity 
as there wasn’t a significant increase in the concentration of the oxidized nitrogen 

background image

 

 95  

concentration after treatment. Other probable reasons could be absence of the nitrification 
process at a pH as high as 11 which would rather inhibit the process regardless of the 
composition of leachate used, absence of sufficient nitrifying bacterial population and 
oxidation of ammonia would require long generation time (Cheung, et al., 1997). 
 
4.4.2  Membrane Resistance and Membrane Cleaning 
 

The experiment on ammonia coupled membrane bioreactor for leachate treatment 

was continued with the membranes which were used for the previous set of experiments. A 
new membrane was changed in both the bioreactors after few days of operation. The 
membrane was changed after 45 days in the BMBR system and after 204 days in the 
YMBR system. The data and figure for initial membrane resistance measurement are given 
in Table D-5 and Figure D-3 of Appendix D. The membrane resistance of the new 
membrane used in the BMBR system was found to be 7.07 x 10

11

 m

-1

 and that of YMBR 

was found to be 9.75 x 10

11

 m

-1

. The frequency of cleaning in the BMBR system was twice, 

114 and 174 days after the experiment started. It was found that the yeast system operated 
2.5 times more than that of the bacterial system.  
 

Membrane fouling causing a decline of permeate flux can also be explained using the 

resistance-in-series model, which provides a simplistic means to describe the relationship 
between permeate flux and trans-membrane pressure. As described in this model, the 
permeate flux is given by the Equation 4.2 and total resistance is given by Equation 4.3.  

 
 

R

t

   =   R

m

 + R

n

 + R

c

 

   Eq. 

4.3 

  
Where; 
 

 

R

m

  

= intrinsic resistance (m

-1

R

n

  

= irreversible fouling (m

-1

R

c

  

= resistance due to cake layer (m

-1

  

This equation gives the various parameters that affect the filtration performance. 

Irreversible fouling (R

n

) results in supplementary resistance to filtration and is often due to 

adsorption of soluble organics. Resistance due to the cake that forms on the membrane 
surface (R

c

) is a function of the concentration and composition of suspended matters as 

well as the applied hydraulic conditions.  
 

The total resistance (R

t

) was measured immediately after the clogging of the 

membrane. R

m

 and R

n

 were obtained by measuring the resistance of the membrane after 

being washed with tap water to remove the cake layer. The membrane resistance after 
chemical cleaning before the operation was considered as R

m

. R

c

 Value was derived from 

R

t

, R

m

, and R

n

 using Equation 4.3. To have a better understanding of the membrane 

resistance and its role in biofouling, the membrane resistance caused by the varied factors 
was measured while cleaning the membrane in the BMBR system. The varied resistance 
measured during the first and the second cleaning is presented in Table 4.13.  
 
 
 
 
 

background image

 

 96  

Table 4.13 Determination of Membrane Resistance of Membrane Module after Clogging in 
BMBR system (A = 0.42 m

2

; Pore Size = 0.1 µm) 

 

Membrane Resistance (m

-1

Item 

1

st

 Cleaning 

2

nd

 Cleaning 

New membrane 

7.07 x 10

11

 

7.07 x 10

11

 

After long run (BMBR) 

9.19 x 10

13

 

1.41 x 10

14

 

After cleaning with tap water 

1.97 x 10

13

 

2.43 x 10

13

 

After chemical cleaning 

8.71 x 10

11

 

9.79 x 10

11

 

Total resistance (R

t

9.19 x 10

13

 

1.41 x 10

14

 

Initial membrane resistance for 
next run (R

m

8.71 x 10

11

 

9.79 x 10

11

 

Fouling resistance (R

n

1.88 x 10

13

 

2.33 x 10

13

 

Cake layer resistance (R

c

7.22 x 10

13

 

1.17 x 10

14

 

 

The total membrane resistance is a sum of cake layer resistance, intrinsic resistance 

and irreversible resistance due to fouling. The variation in transmembrane pressure with 
time in the MBR systems used for ammonia stripped leachate treatment is given in Figure 
4.23. The membrane resistance after the long run was found to be 9.19 x 10

13 

m

-1

 before 

the first cleaning. Which further increased to 1.41 x 10

14

  m

-1 

before the second cleaning 

was done. The cake layer contributed to 79% of the total resistance during the first 
cleaning which further increased to 83% during the second cleaning. From the greatest 
contribution of cake resistance to the total resistance, one could conclude that the 
formation of cake layer played a major role in flux decline during filtration (Kim, et al., 
1998). This could be due to some loss due to the irreversible resistance in the membrane.  
  
 

 

Figure 4.23 Trans-membrane Pressure Variation in MBR Process for Ammonia Stripped  

  Leachate Treatment 

0

10

20

30

40

50

60

70

0

50

100

150

200

250

300

Time (day)

Trans-membrane P

ressure  

(kPa)

0

5

10

15

20

25

30

HR

T (h)    

BMBR
YMBR
HRT

background image

 

 97  

 

After the chemical cleaning of the membrane during both the times, 99% of the 

initial membrane resistance could be obtained. The fouling resistance in the membrane 
bioreactor was 20% and 17% during the first and second cleaning, respectively of that of 
the total resistance. This indicated that the cake layer resistance was much higher than the 
fouling resistance in the membranes. The reduction in flux due to membrane biofouling is 
largely affected by physico-chemical characteristics and physiology of activated sludge as 
well as membrane materials (Kim, et al., 1998). The factors affecting the membrane 
fouling will be discussed in later part of this chapter. 
 
4.4.3  Performance of Ammonia Stripping Coupled Membrane Bioreactor Process 
 
 

As the performance in terms of COD removal efficiency without ammonia stripping 

was not significant with 16 and 24 h HRT, the performance of MBR was evaluated in 
terms of both COD and BOD at HRT of 16 h followed by 24 h. Stable biomass retention in 
the MBR is effective in BOD removal. The MBR system though effective in BOD removal, 
is not easy to remove nitrogen (Ahn, et al., 2002). The optimum conditions derived from 
ammonia stripping studies as described in section 4.4.1 were used for ammonia removal. 
Ammonia removal was used for nitrogen removal instead of nitrification-denitrification 
process because old leachate does not have sufficient degradable organics to supply the 
bacteria with carbon needed for growth. The ammonia stripping was done once every three 
days to feed the membrane bioreactors. The performance could be evaluated as described 
below. 
 

(1) COD Removal Efficiency 
 

 

The COD of the influent leachate ranged from 7,600 to 8,200 mg/L with 16 and 24 h 

HRT. After the ammonia stripping, the leachate was fed into the feed tanks to feed 
membrane bioreactors. In both the operational conditions, with 16 and 24 h HRT, the 
average MLSS concentration ranged from 11,000 to 12,000 mg/L. The MLSS 
concentration was similar to the membrane bioreactors without ammonia stripping. The 
variation in the MLSS concentration and the influent COD influent with 16 and 24 h HRT 
is given in Figure 4.24 and 4.25, respectively. The advantages of biomass retention in 
membrane bioreactor are that, even the slow growing organisms, normally washed off in 
conventional process are retained in membrane bioreactor (Ben Aim and Semmens, 2002). 
The entire range of data is given in Table G-1 to G-4 of Appendix G. 
 
 

The fluctuations in the membrane bioreactor treatment in terms of COD removal 

with ammonia stripping were found to be lower than that without ammonia stripping. Both 
YMBR and BMBR reactor without ammonia stripping, did not show improvement in COD 
removal when the HRT was increased, while in both the systems there was slight 
improvement in COD removal when the HRT was increased. The nitrogen removal in the 
membrane bioreactor was satisfactory. The probable reason for nitrogen removal would 
have been denitrification rather than nitrification as there was not any sufficient increase in 
oxidized nitrogen compounds (Muller, et al., 1995). The COD removal in the YMBR and 
BMBR with the ammonia stripping was the same. Both the membrane reactors showed a 
COD removal of 72% at 16 h HRT and 76% at 24 h HRT. When Ahn, et al. (2002) treated 
leachate  with 1,017 mg/L COD,  they found  that  the MBR system  could achieve a  COD  
 

background image

 

 98  

 

 

Figure 4.24 Variation in COD at 16 and 24 h HRT    

 
 
 

 

Figure 4.25 Variation in MLSS at 16 and 24 h HRT 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

50

100

150

200

Time (Days)

COD (mg/L)

16 h HRT

24 h HRT

0

2000

4000

6000

8000

10000

12000

14000

16000

0

50

100

150

200

Time (Days)

MLSS  (

m

g/L)

16 h HRT

24 h HRT

background image

 

 99  

removal of 38%. A higher removal in the present study could be due to the high 
concentration of biomass used.  The COD removal at 16 and 24 h HRT with and without 
ammonia stripping is presented in Figure 4.26.  
 
 

From Figure 4.26, it is clear that the ammonia stripping improved the performance of 

COD removal of the BMBR much more than that of the YMBR system as anticipated from 
the toxicity studies.  
 

 

Figure 4.26 COD Removal with and without Ammonia Stripping at 16 and 24 h HRT 

 
 

Figure 4.27 shows the expected improvement by ammonia stripping through 

biokinetic study and actual improvement for the influent ammonium concentration. 
Though, the expected improvement in terms of COD removal in the yeast system was low, 
the actual improvement was found to be much higher with 24 h HRT better than the 16 h 
HRT. The probable reason for this could be that the biokinetic studies were done at a low 
substrate concentration as compared to the actual simulated leachate. For the BMBR 
system, the improvements in the COD removal for 24 h HRT was as anticipated though 
lower for 16 h HRT. This is another indication to the fact that the system was more 
stabilized at 24 h HRT than at 16 h HRT.  The standard deviation in the COD removal at 
24 h HRT was 2 mg/L in the BMBR system. Thus, suggesting that in terms of COD 
removal was better at 24 h HRT.  
 
(2) BOD Removal Efficiency 
 

 

 

As the study without ammonia stripping did not show a significant difference in the 

COD removal, BOD was monitored in both the effluents in addition to the COD while 
working on ammonia stripped leachate. The BOD data for 16 and 24 h HRT is presented in 
Figure 4.28 and 4.29. The BOD removal in both the BMBR and YMBR systems were 
above 94%. Ahn, et al. (2002) found that a leachate with BOD around 250 to 300 mg/L, 
BOD removal was 97%. Though the membrane bioreactor was moderately efficient in the 
removal of COD, the BOD removal was high. This shows that the membrane bioreactors 
are efficient in the removal of the degradable organics in the leachate and the probable 

50

55

60

65

70

75

80

85

90

95

100

BMBR-16h BMBR-24h YMBR-16h YMBR-24h

C

OD R

em

ov

al

   

(%)

Without Ammonia Stripping
With Ammonia Stripping

background image

 

 100  

reason for moderate removal efficiency could be because of the refractory nature of the 
leachate. 
 
 

 

Figure 4.27 Expected and Actual Improvement in COD Removal with Ammonia Stripping 

 in the YMBR and BMBR Systems 
 
 

The average BOD removal efficiency of the 16 and 24 h HRT in both the reactors is 

given in Figure 4.30. At 16 h HRT, BOD in the bacterial reactor was about 202 mg/L and 
that of yeast reactor was 84 mg/L.  At 24 h HRT, BOD of yeast effluent was within the 
wastewater discharge standards (30 mg/L) and bacterial effluent slightly exceeded the 
discharge standards (55 mg/L).  
 
 

As the BOD removal was high, the BOD/COD drastically reduced. The influent 

BOD/COD concentration was 0.4.  As shown in Figure 4.31, the BOD/COD ratio reduced 
significantly from 0.4 to 0.1 in the BMBR and 0.01-0.03 in the YMBR.  
 
 

The achieved low BOD/COD ratio indicated that both YMBR and BMBR effluents 

contains a high refractory organic substances which might be due to the contribution of the 
slowly biodegradable organics and non-biodegradable organics contained in the raw 
leachate. 
  

Biokinetic

Study

16h HRT

24h HRT

YMBR

BMBR

0%

5%

10%

15%

20%

25%

30%

Improvement in C

OD 

Removal 

background image

 

 101  

Figure 4.28 BOD in the BMBR and YMBR Effluent at 16 h HRT 

 
 

 

Figure 4.29 BOD in the BMBR and YMBR Effluent at 24 h HRT 

 
 
 

1000

1500

2000

2500

3000

3500

4000

4500

0

10

20

30

40

50

60

Time (Days)

Influen

t BOD

  

 (mg/L)

0

100

200

300

400

500

E

ffluen

t BOD

   

(mg/L)

Influent
YMBR Effluent
BMBR Effleunt

1000

1500

2000

2500

3000

3500

4000

4500

0

20

40

60

80

100

120

140

160

180

Time (Days)

Influent BOD   

(mg

/L)

0

100

200

300

400

500

E

ffluent BOD  

 (

m

g/L

)

Influent
YMBR Effluent
BMBR Effleunt

 

background image

 

 102  

 

 

Figure 4.30 BOD Removal Efficiency in the BMBR and YMBR Systems 

 
 
 

 

Figure 4.31 BOD/COD of the BMBR and YMBR Effluent 

 

 

 

90

91

92

93

94

95

96

97

98

99

100

BMBR-16h

BMBR-24h

YMBR-16h

YMBR-24h

BOD

 Remo

val Efficiency

   

(%)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

BOD/COD

16 h 

24 h 

HRT 

BMBR

YMBR

background image

 

 103  

(3) TKN Removal Efficiency 
 
 

The TKN Removal was high due to the presence of ammonia stripping process. The 

TKN of the influent was around 1,700 mg/L. The TKN of the stripped leachate was found 
to be around 320-340 mg/L for 16 and 24 h HRT. The TKN of the influent, stripped 
leachate and effluent along with effluent ammonical concentration for 16 and 24 h HRT in 
the BMBR and YMBR systems is given in Figure 4.32 and 4.33, respectively.  
 

 

(a) 

 

(b) 

 

Figure 4.32 Influent and Effluent Nitrogen Content in BMBR at (a) 16 h HRT and  

        (b) 24 h HRT 
 

0

300

600

900

1200

1500

1800

2100

0

20

40

60

80

100

120

140

160

Time (days)

Con

centra

tion  

(mg/L

)

0

300

600

900

1200

1500

1800

2100

2400

0

5

10 15 20 25 30 35 40 45 50 55 60

Time (days)

Concen

tration  

 

(mg/L)

TKN (Raw Leachate)

TKN (Stripped Leachate)

TKN (BMBR Effluent)

NH4+-N (BMBR Effluent)

background image

 

 104  

 

The TKN removal in the BMBR and the YMBR reactor showed some difference 

with change in HRT. In the BMBR system, the effluent TKN and ammonical nitrogen 
concentration at 16 h HRT was 300 and 216 mg/L, while at 24 h HRT was 200 and 140 
mg/L, respectively. In the YMBR system, the effluent TKN and ammonical nitrogen 
concentration at 16 h HRT was 280 and 200 mg/L, while at 24 h HRT was 193 and 130 
mg/L, respectively.  This showed that the 24 h HRT was more effective in TKN removal.  
 

 

(a) 

 

(b) 

 

Figure 4.33 Influent and Effluent Nitrogen Content in YMBR at (a) 16 h HRT and  

        (b) 24 h HRT 

0

300

600

900

1200

1500

1800

2100

0

20

40

60

80

100

120

140

160

Time (days)

Concentration   

(mg/L)

0

300

600

900

1200

1500

1800

2100

2400

0

5

10 15 20 25 30 35 40 45 50 55 60

Time (days)

Conc

entratio

n   

(m

g/

L)

TKN (Raw Leachate)

TKN (Stripped Leachate)

TKN (YMBR Effluent)

NH4+-N (YMBR Effluent)

background image

 

 105  

 
 

Figure 4.34 gives the overall TKN removal with and without ammonia stripping in 

the BMBR and YMBR at 16 and 24 h HRT. The TKN removal was better in YMBR 
compared to that of BMBR, though the difference was found to be very less. The TKN 
removal in all conditions was found to be greater than 80%.  
 
 

The TKN removal in the ammonia stripped membrane bioreactor took place at two 

stages. Though the removal through ammonia stripping was predominantly by ammonia 
stripping process, some amount of TKN was removed in the membrane bioreactor. Figure 
4.35 gives the difference between TKN removal with and without ammonia stripping at 16 
and 24 h HRT in BMBR and YMBR systems. 
  
 

The 24 h HRT showed a better removal than at 16 h HRT. The difference in TKN 

removal with and without ammonia stripping in both the MBR systems was found to be 
much greater in 24 h HRT than in 16 h HRT. 
 
 

 

Figure 4.34 Overall TKN Removal in BMBR and YMBR with and without  

 Ammonia Stripping 

 
 

 
 
 
 
 
 
 
 
 
 
 

0

20

40

60

80

100

TKN

 Removal  

(%)

BMBR-16h

BMBR-24h

YMBR-16h

YMBR-24h

Without Ammonia Stripping

With Ammonia Stripping

background image

 

 106  

 

 

Figure 4.35 TKN Removal in MBR Process at 16 and 24 h HRT 

 
 
4.5   Other Studies 
 
4.5.1  Biodegradability of the Leachate 
  

Landfill leachates are usually compared to complex industrial wastewater streams 

which contain both toxic organic and inorganic contaminants (Krug and McDougall, 1988). 
Toxic and hazardous compounds can originate from landfill leachate as a result of soluble 
components of solid and liquid wastes being leachate into surface and groundwater.  
 

The COD present in any wastewater can be categorized into two fractions: 

biodegradable and non-biodegradable COD. The non-biodegradable COD has two sub-
fractions consisting of dissolved non-biodegradable organics and suspended non-
biodegradable organics. The same way, the biodegradable COD has two fractions 
comprising dissolved readily biodegradable organics (S

s

) and suspended slowly 

biodegradable organics (X

s

) (Ekama, et al., 1986; Vanrolleghem, et al., 1999). 

Respirometric method could be effective in measuring the biodegradable component of the 
landfill leachate. During the feed period the rate of supply of S

s

 is due to that added via the 

influent feed and that realized to the liquid via hydrolysis of X

s

. After the supply of S

s

 from 

the feed ceases; OUR immediately drops to the value, which is fixed by the rate of S

s

 

supply from the hydrolysis of slowly degradable particular COD, Xs.  In a batch test, an 
exponential decrease can be observed in respirogram after an initial peak formed due to the 
presence of S

in the leachate. The concentration of X

s

 can also be assessed in a similar 

way (Kappeler and Gujer, 1992). 
 

To find out the biodegradable component present in the leachate, a leachate substrate 

concentration of 43.2 mg COD/L was injected into respirometer containing a sludge 
concentration of 924 mg VSS/L. OUR was measured at a temperature of 30

  o

C. The 

variation in OUR with time is shown in Figure 4.36. The readily biodegradable COD 

0

10

20

30

40

50

BMBR-16h

BMBR-24h

YMBR-16h

YMBR-24h

TKN Removal   

(%

)

Without Ammonia Stripping

With Ammonia Stripping

background image

 

 107  

fraction and slowly biodegradable COD fraction in the influent are related to the oxygen 
utilization. The former is proportional to the area between the initial high OUR plot and 
horizontal line projected to the vertical axis at the level of the second OUR plateau (Area I). 
The latter is proportional to the area II. Area II includes the utilization rate of endogenous 
sludge.  The oxygen utilization in the two phases is given as follows: 
 
 

Area I   = OUR * Time * MLVSS * Volume of respirometer 

  = 

8.57 

mg 

O

2

 

 

Area II  = OUR * Time * MLVSS * Volume of respirometer 

  = 

12.89 

mg 

O

2

 

  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.36 Change of OUR at Different Time Period for Leachate Sample 

 
 

After obtaining the oxygen consumption, the yield coefficient was calculated by the 

formulae,  
  
 

 

Yield coefficient (Y)  =    COD

T

 – OC 

 

 

 

 

 

            COD

T

  

 

 

 

 

           =    38.88 – 21.46    = 0.45 

 

 

 

 

 

            38.88 

 
 Where, 

 

 

 

COD

T

  = Total COD 

  OC 

 

Oxygen 

Consumption 

 

The readily biodegradable COD (S

s

) and slowly biodegradable COD (X

s

) can be 

calculated as follows:  
  

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0

100

200

300

400

500

Time (min)

OU

R

 (

m

g/

m

g.

h)

Area I

Area II

background image

 

 108  

   

 

S

s

 = Oxygen consumption for S

s

 * 100 

 

 

Eq. 4.4 

 

 

 

     (1-Y) * COD

T

 

 

 

 
 

 

X

s

 = Oxygen consumption for X

s

 * 100 

 

 

Eq. 4.5 

 

 

 

     (1-Y) * COD

T

 

 

 

 
 Where, 

 

Oxygen consumption for S

s

 = Area I 

Oxygen consumption for X

s

 = Area II 

  

  

Based on the area covered by the curve (area I), readily biodegradable COD, is equal 

to 40% of total area while area II, slowly biodegradable COD, is equal to 60% of total area. 
Thus, it could be said that among the biodegradation COD, readily degradable components 
are just 40% compared to that of the slowly degradable component. This shows the 
recalcitrant nature of the leachate and the requirement of a long HRT for complete 
degradation of the biodegradable components. Based on the result, the estimated readily 
biodegradable COD can be degraded within 12 h. 
 

Though OUR experiments suggest the readily biodegradable and slowly 

biodegradable components of the biodegradable COD, it does not actually tell the total 
biodegradable content present in the leachate. To further investigate on this aspect, a 20 
days BOD was measured. It has suggested by Henze (1992) that the fractions of organic 
matter in wastewater which are measured in terms of OUR and BOD

5

 are similar. Thus, 

the relation between the COD fraction and BOD concentration may suggest the 
biodegradability of the leachate.  
 

When the 20 days BOD of the raw leachate, stripped leachate, bacterial and the yeast 

effluent were measured, the trend of increase in BOD was similar for raw and stripped 
leachate. The trend of increase in BOD for the yeast and bacterial effluent for the first 10 
days was similar. The trend of the 20 days BOD is given in Figure 4.37 and 4.38.  The raw 
data is given in Table H-1 of Appendix H.  
 

After first 10 days, the BOD of the bacterial effluent did not vary significantly 

compared to that of the yeast effluent. Table 4.14 gives contribution of percent BOD of the 
total BOD for leachate influent and effluent ay different time periods.  
 
Table 4.14 Contribution of BOD at 5, 10 and 15 Days to the Total 20 Days BOD 

 

Percent BOD of 20 days BOD 

Day 

Raw  

Leachate 

Stripped 

 Leachate 

YMBR 

Effluent 

BMBR 

Effluent 

BOD

5

 

(mg/L) 

67 47 25 38 

BOD

10

 

(mg/L) 

86 85 44 63 

BOD

15

 (mg/L) 

94 

100 

81 

75 

BOD

20

 

(mg/L) 

100 100 100 100 

 
 

background image

 

 109  

 

 
 

Figure 4.37 20 Days BOD of the Raw Leachate and Stripped Leachate 

 
 
 

 
 

Figure 4.38 20 Days BOD of the YMBR and BMBR Effluents 

 
 
 

R

2

 = 0.98

R

2

 = 0.96

0

10

20

30

40

50

60

70

80

90

100

0

5

10

15

20

25

Time (Days)

BOD (mg/L)

YMBR Effluent
BMBR Effluent

R

2

 = 0.99

R

2

 = 0.98

0

1000

2000

3000

4000

5000

6000

0

5

10

15

20

25

Time (Days)

BOD (mg/L)

Raw Leachate
Stripped Leachate

background image

 

 110  

From the data obtained above, it can be seen that 5 days BOD contributes to about 

67% of the 20 days COD present in the raw leachate, while in the BMBR and YMBR 
effluent; the 5 days BOD contributed only 38 and 25% of the 20 days BOD. This shows 
that compared to that of the raw leachate, the effluents of the membrane bioreactors take a 
longer time to degrade the organics suggesting the presence of greater amount of slowly 
biodegradable organics. In comparison between YMBR and BMBR effluents, slowly 
biodegradable organics in YMBR effluent was higher than that in BMBR effluent.  
 

When the BOD/COD ratio for raw leachate was considered, it was found that 

BOD

5

/COD was 0.45 which increased to a BOD

20

/COD of 0.68 after 20 days. This 

suggests that the degradable component in the raw leachate is almost 68%. The 
BOD

5

/COD of both the bacterial and yeast effluent was found to be 0.01. Though, the 

bacterial and yeast effluent had a similar BOD

5

/COD ratio, the BOD

20

/COD ratio of the 

bacterial and yeast effluent varied with a ratio of 0.02 and 0.04, respectively. This also 
suggests that the slowly degradable components are more in the yeast effluent in 
comparison with bacterial effluent. 
 
4.5.2  Molecular Weight Cut-off 
 

The organic matter present in the leachate varies and is dependent on the waste 

composition and degree of degradation. The medium molecular weight compounds with 
molecular weight (MW) between 500 and 10,000 Da are dominated by carboxylic and 
hydroxylic groups with fulvic acid and humic fraction also contributing to this fraction in 
the leachate (Chian and DeWalle, 1976; Harmsen, 1983). They are difficult to degrade and 
are termed refractory. The fulvic and humic-like compounds present in leachate are formed 
from micobiological processes from the intermediate products of degradation of polymeric 
organic compounds such as lignine (Andreux, 1979).  

 

The high molecular weight organics are usually stable to degradation. The 

effectiveness of a treatment process can be related to the removal of specific organic 
fraction in leachate. Both fulvic and humic substances are inert to biological treatment. 
Therefore, fractionating the COD based on molecular weight can act as an indicator to the 
removal efficiency and degradation potential of the biological system.  
 

According to the results, the molecular weight distribution or molecular weight cut-

off (MWCO) was computed by measuring the COD concentration of each fraction and the 
volume filtered. The transformation of organic substances corresponding to the change of 
COD mass is shown in Figure 4.39. Detailed calculation is given in Table H-3 of Appendix 
H. 
 

As shown in the figure, the raw leachate contained a higher fraction of high 

molecular weight compounds (> 50 k). The low-molecular weight fractions, which include 
lower molecular weight compounds, were present at low fraction. Figure 4.40 shows 
percent COD contribution of various molecular weight components to the total COD in 
raw leachate, stripped leachate, bacterial and yeast effluents. 
 
 
 
 
 

background image

 

 111  

 
 

 
 

Figure 4.39 Molecular Weight Cut-off of Raw Leachate, Stripped Leachate, Bacterial  

     and Yeast Effluents 
 
 
 

 

 

Figure 4.40 Percent Contribution of Various Molecular Weight Compounds to the 

Total  

  COD 
 

The compounds greater than 50 k molecular weight contributed almost 80% of the 

raw leachate COD. It could be found that some portion of the > 50 k compounds is broken 
down into < 5 k after ammonia stripping. This is indicated by the increase of < 5 k 
compounds. The > 5 k fraction in the raw leachate after stripping increased from 0 to 17%, 
while the > 50 k fraction reduced from 87 to 65%. The 10-50 k and 5-10 k fraction did not 
increase significantly. The increase in 10-50 k and 5-10 k fractions was from 5 to 6% and 8 
to 11%, respectively. Yoon, et al. (1998) showed that about 72-89% of the organics greater 
than MW 500 could be removed and 42% of the organics with less than MW 500 could be 
removed from the leachate using Fenton’s process. However, it was noticed that Fenton’s 
process was not effective in removing organics less than MW of 500. 
 

The MWCO after MBR treatment indicated notable reduction in > 50 k fraction. The 

> 50 k fraction reduced to 3% in the yeast effluent and 7% in the bacterial system. The 
lower molecular weight compounds with MW 10-50 k, 5-10 k and >5 k in the yeast 
effluent increased by 3 to 9%, 7 to 19% and 18 to 65%, respectively. These fractions 
increased from 6 to 12%, 11 to 31% and 18 to 69%, respectively in the bacterial system. 
Using the aerated lagoon for the treatment of leachate, it was found that only 19-28% of 
the total leachate organics was composed of organics less than MW 500 in the effluent 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

COD (

m

g/L)

Raw

Leachate

Stripped

Leachate

Yeast

Effleunt

Bacterial

Effluent

MW>50k

MW 10k-50k

MW 5k-10k

MW<5k

background image

 

 112  

(Yoon,  et al., 1998). This shows that the complex higher molecular weight compounds 
could be degraded effectively using membrane bioreactor systems. For the yeast and 
bacteria effluent, the increase of the COD of below 5 k MW fraction could be explained by 
the biodegradation of high molecular weight organic substances to compounds below 5 k 
MW, as confirmed by the decrease of the COD of the 5 k MW UF retentate.  Similar 
results were obtained while treating leachate in aerobic and anaerobic system by Gourdon, 
et al. (1989). The studies also revealed that recalcitrant organics were non-degradable in 
anaerobiosis, while it could be degraded to 50% in aerobic conditions.  
 

The COD removal after the membrane bioreactor treatment was from 7,500 mg/L to 

about 1,950 mg/L in both the reactors. Among the COD of 7,500 mg/L, about 5,500 mg/L 
was removed by the membrane bioreactor system, either through degradation for energy 
consumption or through assimilation.  
 

To further understand the degradable components present in the leachate and their 

molecular weight distribution, another sample was analyzed with BOD along with COD 
after fractionation. Figure 4.41 and 4.42 gives the COD and BOD contribution of 
compounds at different molecular weight. Table H-4 of Appendix H gives the detailed 
calculation of the results. In the second sample showed a slight difference from the first 
sample. The > 50 k fraction decreased from 91% to 72% and corresponding increase of the 
< 5 k from 0 to 18%.  

 
When the analysis of the molecular weight fractions having organic matter below 

MW 500 of the leachate was done, it has been shown that they contain synthetic organics 
and solvents such as aromatic and alcoholic groups. Phenols, amines and chlorinated 
organics were also found in this fraction. As suggested earlier, the fractions in 5 k to 10 k 
and higher molecular weight contained humic and fulvic substances, along with products 
of municipal dumping and natural fermentation (Slater, et al., 1985). In another study on 
leachate sample suggested that relatively high concentrations of carbohydrates could be 
observed in a high molecular weight fractions and substantial quantities of aromatic 
hydroxyl and carboxylic compounds present in the lower molecular weight fraction (Chian, 
1977). 
 
 

background image

 

 113  

 

Figure 4.41 Molecular Weight Cut-off of Leachate (a) COD (mg/L) (b) COD (%) 

0

2000

4000

6000

8000

COD (mg/L

)

Raw

Leachate

Stripped

Leachate

Yeast

Effleunt

Bacterial

Effluent

MW>50k

MW 10k-50k

MW 5k-10k

MW<5k

 

 

(a) 

0

20

40

60

80

100

CO

D (%)

Raw

Leachate

Stripped

Leachate

Yeast

Effleunt

Bacterial

Effluent

MW>50k

MW 10k-50k

MW 5k-10k

MW<5k

 

(b) 

background image

 

 114  

 

 

Figure 4.42 Molecular Weight Cut-off of Leachate (a) BOD (mg/L) (b) BOD (%) 

 
 

While analyzing the BOD content of the fractions, it was found that 88% (BOD) of 

91% (COD) of the > 50 k fraction was biodegradable. As this could be confirmed by the 
3% remaining > 50 k COD content in the bacterial effluent after membrane bioreactor 
treatment. Looking at the BOD content in the effluent, it was found that in the yeast as well 
as the bacterial effluent < 5 k molecular weight components contributed to the maximum 
BOD when compared to the other fractions. The COD content also showed a similar trend.  

 

0

1000

2000

3000

4000

B

OD (

m

g/

L

)

Raw

Leachate

Stripped

Leachate

Yeast

Effleunt

Bacterial

Effluent

MW>50k

MW 10k-50k

MW 5k-10k

MW<5k

0

20

40

60

80

100

BO

D (%)

Raw

Leachate

Stripped

Leachate

Yeast

Effleunt

Bacterial

Effluent

MW>50k

MW 10k-50k

MW 5k-10k

MW<5k

 

 

(b) 

 

(a)

background image

 

 115  

Though, the obtained COD removal efficiency of both systems was slightly different, 

the majority of organic concentrations in both effluents were in the lower molecular weight 
range indicating that yeast and bacteria were effective in degrading high molecular weight 
organics. The high molecular weight organics may be highly refractory organics (Hosomi, 
et al., 1989). However, the effluent from both systems still consists of the medium 
molecular weight organics such as fulvic acid which are unaffected by biological 
treatment. It could be further treated with post treatment such as ozonation, increasing the 
biodegradable organics or even elevating the water quality of the final effluent.  
 
4.5.3  Sludge Properties  
 

In the membrane coupled biological treatment systems, complete separation of 

microorganisms is possible; thus, high microbial concentration as well as excellent effluent 
quality (Kim, et al., 1998) can be achieved.  The membrane biofouling could be largely 
affected by physico-chemical characteristics and the physiology of the activated sludge as 
well as the membrane materials (Sato and Ishii, 1991; Pouet and Grasmick, 1995; Chang, 
et al., 1996) Therefore, the sludge properties of the membrane bioreactors are important in 
terms of membrane fouling and sludge dewaterability. Dewaterability is usually measured 
in terms of Capillary Suction Time (CST) for evaluating the performance of sludge 
dewatering. Sludge Volume Index (SVI) is another indicator used to measure the 
settleability of the sludge. The bacterial sludge showed a better dewatering quality 
compared to that of the yeast system as shown in Table 4.15.  As suspended solids also 
affect the sludge properties, the MLSS was also measured.  Higher viscosity and 
dewaterability could  be  attributed to the difference between MLSS of mixed bacteria 
sludge and mixed yeast sludge. But, the difference in the MLSS was not found to be large.  
 
Table 4.15 Sludge Properties in the YMBR and BMBR Systems 

 

Sample Reactor DSVI 

(ml/gSS) Viscosity (cP)  CST (s/g SS) 

SS (mg/L) 

YMBR not 

settle 

6.24 

BMBR not 

settle 

13.00 

YMBR not 

settle 

6.30 

128  13,267 

BMBR 79 

9.78  12 14,133 

YMBR not 

settle 

126  13,367 

BMBR 60 

10 13,233 

 

Though the bacterial sludge showed a better dewaterability, the viscosity of the 

bacterial system was found to be more than that of the yeast system. The content of micro-
floc components, such as EPS might have an influence on the permeability (Kim, et al., 
1998). This could be one of the reasons for a frequent membrane fouling in the bacterial 
system compared to that of the yeast system. Along with the MLSS, MLVSS of the sludge 
was also measured as given in Table 4.16.  
 

When MLVSS/MLSS was measured, it was found that the bacterial sludge had a 

lower degradability (0.6) compared to that of the yeast sludge (0.7). However, the 
difference between the degradability of the bacterial sludge and yeast sludge was not much.  
 
 
 
 

background image

 

 116  

Table 4.16 MLSS and MLVSS Concentrations in Yeast and Bacteria Reactors 
 

Sample Reactor  MLSS 

(mg/L)  MLVSS (mg/L) 

MLVSS/MLSS 

YMBR 12,750 

9,866 

0.77 

BMBR 12,867 

8,467 

0.66 

YMBR 13,267 

9,834 

0.74 

BMBR 14,133 

9,066 

0.64 

YMBR 12,433 

9,667 

0.78 

BMBR 12,167 

8,167 

0.67 

YMBR 13,367 

9,833 

0.74 

BMBR 13,233 

8,333 

0.63 

 
4.5.4  EPS Formation 
 

The sludge surface is polymeric in nature comprising of protein, polysaccharides, 

nucleic acid and lipid (Goodwin and Foster, 1985). These extracellular polymeric 
substances excreted by the microorganisms in the microbial floc are a major foulant in the 
membrane coupled activated sludge process (Chang, et al., 1996; Nagaoka, et al., 1996). 
So, in addition to the sludge properties, EPS of the mixed liquor of the bacterial and yeast 
system was measured. Table 4.17 and 4.18 summarizes the variation in bound and soluble 
EPS of YMBR and BMBR. The EPS components could be sub-divided into two parts; 
namely the bound and soluble EPS. The bound EPS corresponds to the polymeric 
substances adhered together with each other and to the microorganisms. The soluble EPS 
indicates the microbial products which have been produced by the microorganisms and 
suspended in the mixed liquor in a soluble form. Both the bound and soluble EPS were 
measured as TOC.   

 

Table 4.17 Bound EPS Concentration in the YMBR and BMBR Systems 

 

Sample Reactor 

MLSS 

(mg/L) 

TOC 

(mg/g SS) 

Protein 

(mg/g SS) 

Carbohydrate 

(mg/g SS) 

Protein/Carbohydrate 

1 YMBR 

 

12,750 46.7  35.4 

24.1 

1.47 

 BMBR 

 

12,867 

47.3 

35.5 26.2 

1.35 

2 YMBR 

 

13,267 43.5  34.5 

21.0 

1.64 

 BMBR 

 

14,133 

42.3 

30.6 25.0 

1.23 

 

Table 4.18 Soluble EPS Concentration in the YMBR and BMBR Systems 
 

Sample Reactor 

MLSS 

(mg/L) 

TOC 

(mg/g SS)

Protein 

(mg/g SS) 

Carbohydrate 

(mg/g SS) 

Protein/Carbohydrate

1 YMBR 

 12,750 133.1  53.4 

41.2 

1.29 

 BMBR 

 

12,867 

138.3 

74.8  44.9 

1.66 

2 YMBR 

 13,267 123.2  50.3 

46.9 

1.07 

 BMBR 

 

14,133 

147.9 

72.1  46.4 

1.55 

 
While measuring the bound and soluble EPS of the bacterial and yeast system, it was 

found that in comparison between YMBR and BMBR, bound EPS concentration in terms 
of TOC was not different while, soluble EPS of mixed bacterial sludge was higher than 
that of mixed yeast sludge. Thus, this indicates soluble EPS could be the factor affecting 
the membrane biofouling. In the soluble EPS, the protein content was also less. A yeast 

background image

 

 117  

cake used on the top of the membrane usually acts as a secondary membrane which retains 
protein aggregates, reducing protein fouling of the primary membrane (Guell, et al., 1999). 
These could be the reasons for lower membrane fouling in the yeast membrane. 
 

The protein and carbohydrates form the main component of the EPS; because of 

these the EPS components were also measured. It is also interesting to note that the protein 
to carbohydrate ratio in the bound EPS was higher in yeast reactor than the bacterial 
reactor and the protein to carbohydrate ratio in the soluble EPS was higher in the bacterial 
reactor than the yeast reactor. This may suggest that higher protein to carbohydrate ratio 
plays a more important role in membrane fouling, if present in the soluble EPS rather than 
that of the bound EPS.  
 
4.5.5  Conductivity and TDS 
 

As the TDS and conductivity are also important parameters for determining leachate 

quality, the TDS and conductivity was monitored for a short period. The average 
conductivity and TDS of raw leachate were found to be 29,213 µS/cm and 14,603 mg/L, 
respectively. After stripping, the leachate contained an average conductivity of 42,255 
µS/cm and average TDS of 21,128 mg/L. For YMBR and BMBR systems, the 
conductivity and TDS concentration were not different (Table 4.19). The TDS and the 
conductivity exceeded the effluent discharge standards.  

 

 
Table 4.19 Conductivity and TDS Concentrations in Leachate and Effluents 
 

Conductivity (µS/cm) 

Sample 
 

Raw 

Leachate 

Stripped 

Leachate 

YMBR 

Effluent 

BMBR 

Effluent 

YMBR 

Reactor 

BMBR 

Reactor 

1  30,060 43,140 40,980 40,830 36,690 37,530 
2  29,640 42,360 36,090 35,760 36,990 38,130 
3  29,040 41,310 38,940 41,400 37,650 39,180 
4  28,110 42,210 36,930 36,600 35,940 35,010 

Average 

29,213 42,255 38,235 38,648 36,818 37,463 

TDS (mg/L) 

Sample 
 

Raw 

Leachate 

Stripped 

Leachate 

YMBR 

Effluent 

BMBR 

Effluent 

YMBR 

Reactor 

BMBR 

Reactor 

1  15,030 21,570 20,490 20,400 18,360 18,750 
2  14,820 21,180 18,060 17,880 18,480 19,050 
3  14,520 20,640 19,470 20,670 18,840 19,590 
4  14,040 21,120 18,450 18,300 17,970 17,520 

Average 

14,603 21,128 19,118 19,313 18,413 18,728 

 
 
4.5.6  Cost Analysis for Operation 
 

To further compare the overall performance of the bacterial and yeast membrane 

bioreactor, the cost analysis of the two systems was done. Table 4.20 gives the cost of 
chemicals used for pH adjustment.  Table 4.21 gives the overall treatment cost for each 

background image

 

 118  

treatment cost. Chemical cost required for MBR operation with and without ammonia 
stripping is given in Table H-5 and H-6 of Appendix H.  
 
Table 4.20 Cost of Chemical Used for pH Adjustment 
 

Item 

  

Equipments and Chemicals 

  

Quantity 

(unit) 

Cost 

(Baht) 

NaOH (commercial grade) 

25 kg/pk 

750 

2 H

2

SO

4

 (commercial grade) 

30 L/container 

420 

 
 

While comparing the chemical cost required for the bacterial and yeast membrane 

bioreactor, it was found that the cost required for leachate treatment using the bacterial 
system is lower than that of the yeast system, though the difference between the two 
systems was not much.  

 

Table 4.21 Total Chemical Cost Requirement for Each Treatment System 
 

Treatment System 

Chemical Cost (Baht/m

3

YMBR  

93 

BMBR 5 
Coupling ammonia stripping with YMBR 

662 

Coupling ammonia stripping with BMBR 

565 

Ozonation (YMBR) 
Oxygen cost for ozonation 

665 

4,800 

Ozonation (BMBR) 
Oxygen cost for ozonation 

565 

2,400 

 

background image

 

 119  

Chapter 5 

 

Conclusions and Recommendations 

 
 
 

This study investigated biological processes by using mixed yeast cultures and mixed 

bacteria cultures for treating landfill leachate containing high organic and ammonium 
nitrogen concentrations. Basic studies on biokinetic coefficient of yeast and bacteria sludge 
were carried out. The effects of high ammonium nitrogen on the yeast and bacteria sludge 
were evaluated using a respirometric method.  
 
 

The main part of this study was focused on the membrane bioreactor. The potential 

for developing a membrane bioreactor using mixed yeast sludge (YMBR) and mixed 
bacteria sludge (BMBR) for treating raw leachate and stripped leachate was examined. The 
last section of this study was focused on the sludge properties, and membrane performance 
was investigated. The summary and conclusions drawn from the experimental results are 
presented below. 
 
5.1   Conclusions 
 
1. 

In a membrane bioreactor which was used to treat raw leachate, it was found that the 
average COD removal efficiency of the YMBR was slightly higher than that of the 
BMBR for varied HRT. The average COD removal efficiency in YMBR system was 
65±2% when HRT was in the range of 16 to 24 h, whereas in BMBR system, the 
average COD removal efficiency was 62±2% at the same range of HRT. At HRT of 
12 h, the average COD removal efficiency in YMBR and BMBR were 60% and 51%, 
respectively. The decrease in removal efficiency in the bacterial system at a lower 
HRT was obviously seen. This can be due to the presence of ammonia in the leachate 
which posed toxicity to the bacterial culture. In addition to a better COD removal 
efficiency, YMBR was more stable than BMBR. This could be considered as a 
specific advantage with the yeast sludge over the bacteria sludge. 

 
2. 

The average TKN removal efficiency for both YMBR and BMBR systems, treating 
raw leachate at different HRT, was from 19-29% and 14-25%, respectively. The 
concentration of nitrite and nitrate (NO

2

-

 and NO

3

-

) in YMBR and BMBR effluents 

were in the range of 0.8 to 6.4 mg/L and less than 1.0 mg/L, respectively. This can be 
due to high organic and ammonium nitrogen concentrations and pH ranges. 

 
3. 

For the ammonia striping process, the average ammonia removal efficiency of 86% 
could be achieved through a stripping process carried out with a high speed velocity 
gradient (G) of 2,850 s

-1

 at pH from 11 to 12 for 5 h.  

 
4. 

In MBR which was used to treat stripped leachate, it was found that the fluctuations 
in terms of COD removal with ammonia stripping were lower than that without 
ammonia stripping. The COD removal in both YMBR and BMBR with the ammonia 
stripping was the same. Both the membrane reactors showed a COD removal of 72% 
at 16 h HRT and 76% at 24 h HRT. It was clear that the ammonia stripping improved 
the performance of COD removal of the BMBR much more than that of the YMBR 
system as anticipated from the toxicity studies. The BOD removal in both YMBR 
and BMBR systems was above 94%. This means that the membrane bioreactors were 

background image

 

 120  

efficient in the removal of the biodegradable organics in the leachate. At 24 h HRT, 
the range of BOD concentration was from 30 to 55 mg/L which followed the present 
effluent standard. Both YMBR and BMBR effluents, contained low BOD/COD ratio 
indicated that there were high refractory organic substances, which may be due to the 
contribution of the slowly biodegradable organics and non-biodegradable organics, 
containing in the raw leachate. Whereas, the average TKN removal efficiency in all 
conditions was greater than 80%. 

 
5. 

YMBR system gave significantly better reduction in the membrane fouling rate than 
BMBR system. The trend of membrane clogging in BMBR was higher than in 
YMBR with correspondingly higher transmembrane pressure. However, YMBR 
might be operated with a relatively low pressure for a prolonged filtration cycle. 
Therefore, the bacteria membrane frequently requires cleaning. The average filtration 
time for the yeast system was 1.3-2.5 times of the bacteria system. As a result, yeast 
in a MBR reactor can enhance membrane performance and has the potential to 
improve the economics of treatment system because of the reduction of operational 
problems and maintenance cost.  

 
6. 

For the biokinetic study, a comparative evaluation of the biokinetic parameters for 
both yeast and bacteria sludge, which were used to treat leachate, illustrated that the 
maximum specific growth rate (µ

max

) was less than the typical values for domestic 

wastewater whereas yield coefficient (Y) was still in the range of domestic 
wastewater. Additionally, the parametric group (µ

max

/Y.K

s

) for yeast and bacteria 

treating leachate were 1.77 x 10

-3

 and 3.06 x 10

-3

 L/mg.h, respectively. This 

indicated that the biodegradation of organics by yeast was less than that of bacteria. 
It was confirmed that the biodegradation rates for both yeast and bacteria in treating 
leachate were lower than that of domestic wastewater.  

 
7. 

The influence of ammonium nitrogen on a bacteria culture was very sensitive, 
compared to a yeast culture. Also the values of biokinetic coefficients show that the 
specific growth rate in a bacteria system was influenced by ammonium nitrogen. At 
ammonium nitrogen concentration of 2,000 mg/L, the response of OUR inhibition in 
a bacteria system was approximately 37%, whereas that in a yeast system was around 
6%. Thus, the ammonia concentration slightly affected the yeast system but it 
inhibited the microbial growth in the bacterial system. Moreover, ammonia stripping 
was used to prevent the inhibition of the toxic compounds to the organisms and to 
provide the better efficiency of the biological system. 

 
8. 

For the effect of lead on OUR inhibition of bacteria and yeast cultures, we found that 
the soluble lead concentration of 2.38 mg/L in bacterial system showed 55% 
inhibition with non-linear correlation while the soluble lead concentration of 1.50 
mg/L gave 50% inhibition with linear correlation in yeast system. 

 
9. 

The total membrane resistance (R

t

) in this study was depended mainly on a cake 

resistance (R

c

). This might be due to the cake layer deposited over the membrane 

surface. The formation of cake layer plays a major role in flux decline during 
filtration. 

 
10.  The BOD

5

/COD of both YMBR and BMBR effluents was 0.01. Whereas, the 

BOD

20

/COD ratio of the YMBR and BMBR effluents varied with a ratio of 0.04 and 

background image

 

 121  

0.02, respectively. This can be considered that the slowly degradable components in 
the yeast effluent are higher than that in the bacterial effluent. 

 
11.  The contribution of molecular weight compounds > 50 kDa in the raw leachate was 

greater than 80% in terms of BOD and COD concentrations. This found that some 
portion of the > 50 kDa compounds was broken down into < 5 kDa after ammonia 
stripping. The reduction of molecular weight compounds > 50 kDa significantly 
presented after MBR treatment. This showed that the complex higher molecular 
weight compounds could be degraded effectively using membrane bioreactor 
systems. Considering the BOD content in the effluent, it was found that in both yeast 
and bacterial effluents, the molecular weight compounds < 5 kDa contributed to the 
maximum BOD when compared with the other fractions. The COD content also 
showed a similar trend.  

 
12.  For the sludge properties, the bound and soluble EPS of the yeast and bacteria 

systems are measured. In comparison between yeast and bacteria systems, bound 
EPS concentration in terms of TOC was not different while soluble EPS of mixed 
bacterial sludge was higher than that of mixed yeast sludge.  Also, the protein to 
carbohydrate ratio in the soluble EPS was higher. This indicated that soluble EPS 
could be the factor which affected the membrane fouling. 

 
13.  The bacterial sludge showed a better dewatering quality than that of the yeast sludge. 

The viscosity of the bacterial system was higher than the yeast system. 

 
14.  Ammonia stripping pretreatment with MBR was effective in treating leachate with 

high ammonium nitrogen concentration but the effluent still contained a large 
quantity of refractory organic compounds. This might be due to the contribution of 
the slowly biodegradable organics and non-biodegradable organics containing in the 
leachate. Therefore, it should be further treated in a post treatment, elevating the 
water quality of the final effluent or even increasing the biodegradable organics 

 
5.2   Recommendations for Future Work 
 
 

Based on the extensive experimental results of this study, the following 

recommendations are proposed. 
 
1. 

For MBR system, membrane fouling is a common problem but it is made more 
difficult to predict and control in the MBR. This might be due to the effects of active 
microorganisms generating EPS. The EPS is of key significance with respect to 
fouling that is dependent on the EPS concentrations and chemical components of 
EPS. Fouling is also affected by the floc size and particle size distribution correlated 
with membrane permeability. It is recommended that future work should be focused 
on the contributions of the various particle fractions (suspended particles, colloidal, 
soluble solids), presenting in the sludge on the mechanisms of membrane fouling. 
More laboratory and pilot scale experiments are needed to estimate membrane 
fouling and the influences of operating parameters.  

 
2. 

In MBR system, the various soluble organic substances could be retained within the 
bioreactor. The components of soluble organic compounds are complex and may 
include humic substances, fluvic acids, polysaccharides, proteins, etc. Therefore, the 

background image

 

 122  

MBR system should be explained the behavior of the accumulated soluble organic 
compounds. In addition, for better understanding of the characteristics of organic 
substances in MBR, the molecular weight distribution (MWD) and its compositions 
should be analyzed to investigate the transformation of organic substances. 

 
3. 

It is well known that landfill leachate, containing non-biodegradable and toxic 
organic compounds caused important environmental problems. Thus, the degradation 
of refractory organic compounds before and after treatments should be further 
studied in terms of the degradation of some substances such as the degradation of 
polycyclic aromatic hydrocarbons (PAHs), BTEX, aromatic hydrocarbon, aromatic 
ketone.  

 
4. 

Landfill leachate is a complex wastewater with considerable variation in both quality 
and quantity. The characteristics of leachate, particularly in terms of biodegradability, 
change as a landfill ages; it is difficult to treat leachate from a medium site and an 
old site using a one-stage membrane bioreactor (MBR). Based on our encouraging 
results, the treated leachate nevertheless still contains the refractory organic 
compounds, which are difficult to degrade. Therefore, further research should be 
performed on an advanced treatment such as nanofiltration, electrochemical 
oxidation, or photoassisted fenton methods to treat the recalcitrant organic substances. 
These methods might elevate the water quality of the final effluent to meet the 
present effluent standard. In addition, for better understanding of the characteristics 
of organic substances in treated leachate, the MWD and its compositions should be 
analyzed to indicate the extent of organic removal in each fraction with HPLC, LC-
MS for all treatments.  

 
5. 

There is a problem regarding foaming in the MBR system due to inadequate dosage 
of antifoam chemicals. This should be controlled by using a peristaltic pump.  

 
 
 

background image

 123  

References 

 
Abeling, U., and Seyfried, C.F., 1992. Anaerobic-Aerobic Treatment of High Strength 
Ammonium Wastewater- Nitrogen Removal via Nitrite. Water Science and Technology, 26 
(5-6): 1007-1015. 
 
Abeliovich, A., and Azov, Y., 1976. Toxicity of Ammonia to Algae in Sewage Oxidation 
Ponds. Apply Environmental Microbiology, 31: 801-806. 
 
Agamuthu, P., 1999. Characterization of Municipal Solid Waste and Leachate from 
Selected Landfills in Malaysia. Malaysian Journal of Science, 18: 99-103. 
 
Ahn, W.Y., Kang, M.S., Yim, S.K., and Choi, K.H., 1999. Nitrification of Leachate with 
Submerged Membrane Bioreactor: Pilot Scale. Proceedings IWA Conference Membrane 
Technology in environmental Management
, Tokyo, Japan: 432-435. 
 
Ahn, W.Y., Kang, M.S., Yim, S.K., and Choi, K.H., 2002. Advanced Landfill Leachate 
Treatment Using an Integrated Membrane Process. Desalination, 149: 109-114. 
 
Albers, H., and Kruckeberg, G., 1992. Combination of Aerobic Pre-treatment, Carbon 
Adsorption and Coagulation. In: Landfill of Waste: Leachate. Edited by Christensen, T.H., 
Cossu, R., and Stegmann, R. Elsevier Science Publishers Ltd., England: ISBN: 1-85-
166733-4: 305-312. 
 
Amokrane, A., Comel, C., and Vernon, J., 1997. Landfill Leachates Pre-treatment by 
Coagulation-Flocculation. Water Research, 31(11): 2775-2782. 
 
Andreux, F., 1979. Genese et Proprietes des Molecules Humiques. In Pedologie, 
Constituants et Proprietes du Sol, Paris, France: 97-122.  
 
Arnold, J.D., Knapp, J.S., and Johnson, C.L., 2000. The Use of Yeasts to Reduce the 
Polluting Potential of Silage Effluent. Water Research, 34(15): 3699-3708. 
 
Andreottola, G., and Cannas, P., 1992. Chemical and Biological Characteristics of Landfill 
Leachate. In: Landfill of Waste: Leachate. Edited by Christensen, T.H., Cossu, R., and 
Stegmann, R. Elsevier Science Publishers Ltd., England: ISBN: 1-85-166733-4: 65-88. 
 
APHA, AWWA, WPCF, 1998. Standard Methods for the Examination of Water and 
Wastewater
. 20

th

 Edition, Washington DC, USA. ISBN 0-87553-235-7. 

 
Avezzu, F., Bissolotti, G., and Collivignarelli, C., 1992. Combination of Wet Oxidation 
and Activated Sludge Treatment. In: Landfill of Waste: Leachate. Edited by Christensen, 
T.H., Cossu, R., and Stegmann, R. Elsevier Science Publishers Ltd., England: ISBN: 1-85-
166733-4: 333-352. 
  
Bae, J.H., Kim, S.K., and Chang, H.S., 1997. Treatment of Landfill Leachates: Ammonia 
Removal via Nitrification and Denitrification and further COD reduction via Fenton’s 
Treatment followed by Activated Sludge. Water Science and Technology, 36 (12): 341-
348. 
 

background image

 124  

Bae, B.U., Jung, E.S., Kim, Y.R., and Shin, H.S., 1999. Treatment of Landfill Leachate 
Using Activated Sludge Process and Electron-Beam Radiation. Water Research, 33(11): 
2669-2673. 
 
Barlaz, M.A., Ham, R.K., and Schaefer, D.M., 1989. Mass Balance Analysis of 
Decomposed Refuse in Laboratory Scale Lysimeter. Journal of Environmental 
Engineering, ASCE 
115: 1088-1102 
 
Barnes, D. and Bliss, P.J., 1983. Biological Control of Nitrogen in Wastewater Treatment
1

st

 Edition, E. & F. N. Spon, Ltd.: ISBN: 0-41-912350-4. 

 
Baumgarten, G., and Seyfried, C.F., 1996. Experiences and New Developments in 
Biological Pretreatment and Physical Post Treatment of Landfill Leachate. Water Science 
and Technology
, 34(7-8): 445-453. 
 
Baun, A., Kloft, L., Bjerg, P.L., and Nyholm, N., 1999. Toxicity Testing of Organic 
Chemicals in Groundwater Polluted with Landfill Leachate. Environmental Toxicology and 
Chemistry
, 18(9): 2046-2053. 
 
Belfort, G., 1989. Membranes and Bioreactors: A Technical Challenge in Biotechnology. 
Biotechnology and Bioengineering, 33: 1047-1066. 
 
Ben Aim, R.M., and Semmens, M.J., 2002. Membrane Bioreactors for Wastewater 
Treatment and Reuse: A Success Story. Water Science and Technology, 47(1): 1-5. 
 
Bjorkman, V.B., and Mavinic, D.S., 1977. Physico-Chemical Treatment of a High Strength 
Leachate
. Proceedings 32

nd

 Annual Industrial Waste Conference, Purdue University, 

Lafayeete, Indiana, USA: 189-195. 
 
Blakey, N.C., Cossu, R., Maris, P.J., and Mosey, F.E., 1992. Anaerobic Lagoons and 
UASB Reactors: Laboratory Experiments. In: Landfill of Waste: Leachate. Edited by 
Christensen, T.H., Cossu, R., and Stegmann, R. Elsevier Science Publishers Ltd., England: 
ISBN: 1-85-166733-4: 245-263. 
 
Blum, D.J.W., and Speece, R.E., 1992. The Toxicity of Organic Chemicals to Treatment 
Processes. Water Science and Technology, 25(3): 23-31. 
  
Boyle, W.C., and Ham, R.K., 1974. Biological Treatability of Landfill Leachate. Journal 
of Water Pollution Control Federation
, 46(5): 860. 
 
Bressi, G., and Favali, G., 1997. Uses of MBR (Membrane Bioreactor) in Leachate 
Treatment.  Proceedings Sardinia'97, 6

th

 International Waste Management and Landfill 

Symposium, Cagliari, Italy.  
 
Brockmann, M., and Seyfried, C.F., 1996. Sludge Activity and Cross-flow Microfiltration- 
A Non Beneficial Relationship.  Water Science and Technology, 34: 205-213. 
 
Brown, K., and Donnelly, K.C., 1988. An Estimation of the Risk Associated with the 
Organic Constituents of Hazardous and Municipal Waste Landfill Leachates. Hazardous 
Waste
 and Hazardous Materials, 5: 1-30. 

background image

 125  

 Brown, M.J., and Lester, J.N., 1980. Metal Removal in Activated Sludge: The Role of 
Bacteria Extracellular Polymers. Water Research, 13: 817-837. 
 
Bull, P.S., Evans, J.V., Wechsler, R.M., and Cleland, K.J., 1983. Biological Technology of 
the Treatment of Leachate from Sanitary Landfills. Water Research, 17(11): 1473-1481. 
 
Bura, R, Cheung, M., Liao, B., Finlayson, J., Lee, B.C., Droppo, I.G., Leppard, G.G., and 
Liss, S.N., 1998. Composition of Extracellular Polymeric Substances in the Activated 
Sludge Matrix.  Water Science and Technology, 37: 325-333. 
 
Cairns, J., and Van Der Schalie, W.H., 1980. Biological Monitoring Part I- Early Warning 
Systems. Water Research, 14: 1179-1196. 
 
Cameron, R.D., and Koch, F.A., 1980. Trace Metals and Anaerobic Digestion of Leachate. 
Journal of Water Pollution Control Federation
, 52(2): 282. 
 
Chae, K.J., Oh, S.E., Lee, S.T., and Kim, I.S., 1999. Biological Leachate Treatment by 
Pure-Oxygen Aeration and Modeling the Removal of Organics. Journal of Korean Society 
of Environmental Engineering
, 21(10): 1891-1900. 
 
Chaing, L.C., Chang, J.E., and Wen, T.C., 1995. Indirect Oxidation Effect in 
Electrochemical Oxidation Treatment of Landfill Leachate. Water Research, 29(2): 671-
678. 
 
Chang, I. S., Kim, J.S., and Lee, C.H., 1996. Membrane Biofouling Characteristics in 
Membrane Coupled Activates Sludge System. Proceeding of ICOM, Yokohama, Japan: 
926-927. 
  
Chang, I.S., and Lee, C.H., 1998. Membrane Filtration Characteristics in Membrane 
Coupled Activated Sludge System-The Effect of Physiological States of Activated Sludge 
on Membrane Fouling.  Desalination, 120: 221-233. 
 
Chang, I.S., and Lee, C.H., 2001. The effects of EPS on Membrane Fouling in the MBR 
Process. Proceedings MBR3 Conference, England: 19-28. 
 
Chen, C.Y., Huang, J.B., and Chen, S.D., 1997. Assessment of the Microbial Toxicity Test 
and Its Application for Industrial Wastewater. Water Science and Technology, 36(12): 375-
382. 
 
Cheung, K.C., Chu, L.M., and Wong, H.M., 1993. Toxic Effect of Landfill Leachate on 
Microalgae. Water Air and Soil Pollution, 69: 337-349. 
 
Cheung, K.C., Chu, L.M., and Wong, M.H., 1997. Ammonia Stripping as a Pre-treatment 
for Landfill Leachate. Water, Air and Soil Pollution, 94: 209-221. 
 
Chian, E.S.K. and DeWalle, F.B., 1976. Sanitary Landfill Leachjate and Their Treatment. 
Journal of the Environmental Engineering Division, ASCE, 102: 411-431. 
 
Chian, E.S.K., 1977. Stability of Organic Matter in Landfill Leacahtes. Water Research, 
11(2): 225-232. 

background image

 126  

Chian, E.S.K., and DeWalle, F.B., 1977. Treatment of High Strength Acidic Wastewater 
with a Completely Mixed Anaerobic Filter. Water Research, 11: 295-304.  
 
Chiang, L.C., Chang, J.E., and Wen, T.C., 1995. Indirect Oxidation Effect in 
Electrochemical Oxidation Treatment of Landfill Leachate. Water Research, 29(2): 671-
678. 
 
Chigusa, K., Hasegawa, T., Yamamoto, N., and Watanabe, Y.,  1996. Treatment of 
Wastewater from Oil Manufacturing Plant by Yeasts. Water Science and Technology, 
34(11): 51-58. 
 
Cicek, N., Franco, P., Suidan, M., Urbain, V., and Manem, J., 1999. Characterization and 
Comparison of a Membrane Bioreactor and a Conventional Activated Sludge System in the 
Treatment of Wastewater Containing High Molecular Weight Compounds. Water 
Environmental Research
, 71:  64-70. 
 
Clement, B., Persoone, G., Janssen, C., and Le Du-Delepierre, A., 1996. Estimation of the 
Hazard of Landfills Through Toxicity Testing of Leachates: 1. Determination of Leachate 
Toxicity with a Battery of Acute Tests. Chemosphere, 33: 2303-2320. 
 
Cook, E.N., and Foree, E.G., 1974. Aerobic Bio-stabilization of Sanitary Landfill 
Leachate.  Journal of Water Pollution Control Federation, 46(2): 380-392. 
 
Cossu, R., Polcaro, A.M., Lavagnolo, M.C., Mascia, M., Palmas, S., and Renold, F., 1998. 
Electrochemical Treatment of Landfill Leachate: Oxidation at Ti/PbO

2

 and Ti/SnO

2

 

Anodes. Environmental Science and Technology, 32: 3570-3573. 
 
Cossu, R., Serra, R., and Muntoni, A., 1992. Physico-Chemical Treatment of Leachate. In: 
Landfill of Waste: Leachate. Edited by Christensen, T.H., Cossu, R., and Stegmann, R. 
Elsevier Science Publishers Ltd., England: ISBN: 1-85-166733-4: 265-304. 
 
Cui, Q., and Tang, C., 2000. Effects of Lead and Selenium on Yeast (Saccharomyces 
Cerevisiae) Telomere. Journal of Environmental Science and Health, Part A: 
Toxic/Hazardous Substances and Environmental Engineering
, 35(9): 1663-1671.  
 
Dan, N.P., 2002. Biological Treatment of High Salinity Wastewater Using Yeast and 
Bacteria Systems.
 Dissertation, Asian Institute of Technology, Thailand. 
 
Dan, N.P., Visvanathan, C., Polprasert, C., and Aim, R.B., 2002. High Salinity 
Wasterwater Treatment Using Yeast and Bacteria Membrane Bioreactors. Water Science 
and Technology
, 46(9): 201-209. 
 
Defrance, L., Jaffrin, M.Y., Gupta, B., Paullier, P., and Geaugey, V., 2000. Contribution of 
Various Constituents of Activated Sludge to Membrane Bioreactor Fouling.  Bioresource 
Technology
, 73: 105-112 
 
Defrance, M.B., 1993. Etude d’un Reactor Levurien Pour le Traitement des Effluents 
d’Industries Alimentairs
. Doctoral Thesis, University of Montpellier II-Sciences et 
Techniques du Languedoc, France. 
 

background image

 127  

Diamadopoulos, E., 1994. Characterization and Treatment of Recirculation-Stabilized 
Leachate. Water Research, 28(12): 2439-2445. 
 
Dichtl, N., Dockhorn, T., and Wittenberg, M., 2001. Investigations Comparing SBR 
Reactors and Continuous Flow Plants for the Nitrification of Landfill Leachate. 
Proceedings Sardinia’ 01, 8

th

 International Waste Management and Landfill Symposium

Cagliari, Italy. 
 
Dignac, M.F., Urbain, V., Rybacki, D., Bruchet, A., Snidaro, D., and Scribe, P., 1998. 
Chemical Description of Extracellular Polymers: Implication on Activated Sludge Floc 
Structure.  Water Science and Technology, 38: 45-53 
 
Dijk, L., and Roncken, G.C.G., 1997. Membrane Bioreactor for Wastewater Treatment: 
The State of the Art and New Developments. Water Science and Technology, 35(10): 35-
41. 
 
Dollerer, J., and Wilderer, P.A., 1996. Biological Treatment of Leachates from Hazardous 
Waste Landfills Using SBBR Technology. Water Science and Technology, 34(7-8): 437-
444. 
 
Doyle, J., Watts, S., Solley, D., and Keller, J., 2001. Exceptionally High-rate Nitrification 
in Sequencing Batch Reactors Treating High Ammonia Landfill Leachate. Water Science 
and Technology
, 43 (3): 315-322. 
 
Dubois, M.J., Gilles, K.A., Hamilton, J.K., Reber, P.A., and Smith, F., 1956. Colorimetric 
Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3): 
350-356. 
 
Dzombak, D.A., Langnese, K.M., Spengel, D.B., and Luthy, R.G., 1990. Comparison of 
Activated Sludge and RBC Treatment of Leachate from a Solid Waste Landfill. 
Proceeding of 1990 WPCF National Specialty Conference on water quality Management 
of Landfills
, July 15-18, Chicago, USA: 4-39-4-58. 
 
Ehrig, H.J., 1983. Quality and Quantity of Sanitary Landfill Leachate. Waste Management 
and Research
, 1: 53-68. 
 
Ehrig, H.J., 1998. Water and Element Balances of Landfills, Lecture Notes in Earth 
Sciences, Edited by Baccini, P., Springer-Verlag, Berlin, Germany. 
 
Ekama, G.A., Dold, P.L., and Marais, G.V.R., 1986. Procedures for Determining Influent 
COD Fractions and the Maximum Specific Growth Rate of Heterotrophs in Activated 
Sludge System. Water Science and Technology, 18(6): 91-114. 
 
Elmaleh, S., Defrance, M.B., Ghommidh, C., and Navarro, J.M., 1996. Technical Note: 
Acidogenic Effluents Treatment in a Yeast Reactor. Water Research, 30(10): 2526-2529. 
 
Fairweather, R.J., and Barlaz, M.A., 1988. Hydrogen Sulphide Production During 
Decomposition of Landfill Inputs. Journal of Environmental Engineering, ASCE, 124: 
353-361. 
 

background image

 128  

Fan, X., Urbain, V., Qian, Y., and Manem, J., 1996. Nitrification and Mass Balance with 
MBR for Municipal Wastewater Treatment. Submitted for the 1996 IAWQ Biennial 
Conference
, Singapore. 
 
Fane, A.G., Fell, C.J.D., and Nor, M.T., 1981. Ultrafiltration Activated Sludge System-
Development of a Predictive Model.  Polymer Science Technology, 13: 631-658. 
 
Farquhar, G.J., 1989. Leachate: Production and Characteristics. Canadian Journal of Civil 
Engineering
, 16: 317-325. 
 
Fettig, J., Stapel, H., Steinert , C., and Geiger, M., 1996. Treatment of landfill leachate by 
preozonation and adsorption in activated carbon columns. Water Science and Technology
34 (9):33–40. 
 
Fisher, M., and Fell, C., 1999. Ammonia Removal from High Strength Leachate Using a 
Sequencing Batch Reactor. Waste Management, 25-26. 
 
Flemming, H.C., and Wingender, J., 2001. Relevant of Microbial Extracellular Polymeric 
Substances-Part II: Technical aspects. Water Science and Technology, 43(6): 9-16. 
 
Garcia, H., Rico, J.L., and Garcia, P.A., 1996. Comparison of Anaerobic Treatment of 
Leachates from an Urban-Solid-Waste Landfill at Ambient Temperature and at 35

o

C. 

Bioresource Technology, 58: 273-277. 
 
Gau, S.H. and Chang, F.S., 1996. Improved Fenton Method to Remove Recalcitrant 
Organics in Landfill Leachate. Water Science and Technology, 34(7-8); 455-462. 
 
Gaudy, A.F., Rozich, A., and Garniewski, S., 1986. Treatability Study of High Strength 
Landfill Leachate. Proceedings of the 41

st

 Industrial Waste Conference, Purdue University, 

Indiana, USA: 627-638.  
  
Geenens, D., Bixio, D., and Thoeye, C., 1999. Advanced Oxidation Treatment of Landfill 
Leachate.  Proceedings Sardinia’99, 7

th

 International Waste Management and Landfill 

Symposium, Cagliari, Italy. 
 
Ghyoot, W., Vandaele, S., and Verstraete, W., 1999. Nitrogen Removal from Sludge 
Reject Water with a Membrane Assisted Bioreactor. Water Research, 33: 23-32. 
 
Gierlich, H., and Kollbach, J., 1998. Treating Landfill Leachate in European Countries
Pollution Engineering International: 10-14. 
 
Goodwin, J.A.S., and Foster, C.F., 1985. A Future Examination into the Composition of 
Activated Sludge Surfaces in Relation to Their Settlement Characteristics. Water Research
19: 527-533. 
  
Gourdon, R., Comel, P., Vermande, P., and Veron, J., 1989. Fractionate of the Organic 
Matter of a Landfill Leachate before and after Aerobic or Anaerobic Biological Treatment. 
Water Research, 23(2): 167-173. 
 

background image

 129  

Grady, C.P.L., Daigger, G.T., and Lim, H.C., 1999. Biological Wastewater Treatment. 2

nd

 

Edition, Marcel Dekker, Inc.: ISBN: 0-82-478919-9. 
 
Graham, D.W., 1981. Biological-Chemical Treatment of Landfill Leachate. Department of 
Civil Engineering, University of British Columbia, Canada. 
 
Graham, D.W., and Mavinic, D.S., 1979. Biological-Chemical Treatment of Leachate. 
Proceedings of the American Society of Civil Engineers National Conference on 
Environmental Engineering
, San Francisco, USA: 291-298.  
 
Guell, C., Czekaj, P., and Davis, R.H., 1999. Microfiltration of Protein Mixtures and the 
Effects of Yeast on Membrane Fouling. Journal of Membrane Science, 155(1): 113-122. 
 
Gunder, B., 2001. The Membrane Coupled Activated Sludge Process in Municipal 
Wastewater Treatment
. Technomic Publishing Co., Inc., USA: ISBN: 1-56-676959-0. 
 
Gurijala, K.R., and Suflita, J.A., 1993. Environmental factors influencing methanogenesis 
from refuse in landfill samples. Environmental Science and technology, 27:1176-1181. 
 
Hall, E.R., Onysko, K.A., and Parker, W.J., 1995. Enhancement of Bleached Kraft 
Organo-chlorine Removal by Coupling Membrane Filtration and Anaerobic Treatment. 
Environmental Technology, 16: 115-126. 
 
Hanaki, K., Wantawin, C., and Ohgaki, S., 1990. Effects of the Activity of Heterotrophs on 
Nitrification in a Suspended Growth Reactor. Water Research, 24(3): 289-296. 
 
Harmsen, J., 1983. Identification of Organic Compounds in Leachate from a Waste Tip. 
Water Research, 17(6): 699-705. 
 
Henderson, J.P., Besler, D.A., Atwater, J.A., and Mavinic, D., 1997. Treatment of 
Methanogenic Landfill Leachate to Remove Ammonia Using a Rotating Biological 
Contactor (RBC) and a Sequencing Batch Reactor (SBR). Environmental Technology
18(7): 687-698. 
 
Henry J. G., Prasad, D., Sidhwa, R., and Hilgerdenaar, M., 1982. Treatment of Landfill 
Leachate by Anaerobic Filter. Water Pollution Research Journal of Canada, 17: 45-56. 
 
Henry, J.G., 1985. New Developments in Landfill Leachate Treatment. Proceedings of 
International Conference on New Directions and Research in Waste Treatment and 
Residuals Management
, University of British Columbia, USA: 1-139. 
 
Henry, J.G., Prasad, D., and Young, H., 1987. Removal of Organics from Leachates by 
Anaerobic Filter. Water Research, 21(11): 1395-1399. 
 
Henze, M., 1992. Characterization of Wastewater for Modelling Activated Sludge 
Processes. Water Science and Technology, 25(6): 1-15. 
 
Ho, S., Boyle, W.C., and Ham, R.K., 1974. Chemical treatment of Leachates from  
Sanitary Landfills, Journal of Water Pollution Control Federation, 46(7), 1776-1791. 
 

background image

 130  

Hosomi, M., Matsusige, K., Inamori, Y., Sudo, R., Yamada, K., and Yoshino, Z., 1989.  
Sequencing Batch Reactor Activated Sludge Processes for the Treatment of Municipal 
Landfill Leachate: Removal of Nitrogen and Refractory Organic Compounds. Water 
Science and Technology
, 21: 1651-1654. 
 
Hu, T.1989. Treatment of Vermicelli Wastewater by an Acid-tolerant, Starch Degrading 
Yeast. Biological Waste, 28(3): 163-174. 
 
Huang, X., Liu, R., and Qian, Y., 2000. Behaviour of Soluble Microbial Products in a 
Membrane Bioreactor. Process Biochemistry, 36: 401-406. 
 
Illies, P., 1999. Biological Nitrification and Denitrification of High Ammonia Landfill 
Leachate Using Pre and Post Treatment Denitrification Systems and Methanol as 
Supplementary Source of Organic Carbon
. Master Thesis, University of British Columbia, 
Canada. 
 
Imai, A., Iwami, N., Matsushige, K., Inamori, Y., and Sudo, R., 1993. Removal of 
Refractory Organics and Nitrogen from Landfill Leachate by the Microorganism-Attached 
Activated Carbon Fluidised Bed Process. Water Research, 27(1): 143-145.  
 
Imai, A., Onuma, K., Inamori, Y., and Sudo, R., 1995. Biodegradation and Adsorption in 
Refractory Leachate Treatment by the Biological Activated Carbon Fluidized Bed Process. 
Water Research, 29(2): 687-694. 
 
Jans, J.M., Schroeff, A.V.D and Jaap, A., 1992. Combination of UASB Pre-treatment and 
Reverse Osmosis
. In: Landfill of Waste: Leachate. Edited by Christensen, T.H., Cossu, R., 
and Stegmann, R. Elsevier Science Publishers Ltd., England: ISBN: 1-85-166733-4: 313-
321. 
 
Jensen, J.C., Cameron, D.H., and Penny, J.P., 2001. Operating Experience with Innovative 
High Efficiency Membrane Treatment of Landfill Leacahte. The 6

th

 Annual symposium by 

Waste Association of North America

 (

SWANA). 

 
Jonard, Z., Zartarian, F., Thomas, F., Block, J.C., Bottero, J.Y., Villemin, G., Urbain, V., 
and Manem, J., 1995. Chemical and Structural (2D) Linkage between Bacteria within 
Activated Sludge Flocs. Water Research, 29: 1639-1647. 
 
Kabdasli, I., Tunay, O., Ozturk, I., Yilmaz, S., and Arikan, O., 2000. Ammonia Removal 
from Young Landfill Leachate by Magnesium Ammonium Phosphate Precipitation and Air 
Stripping. Water Science and Technology, 41(10): 237-240. 
 
Kang, K.H., Shin, H.S., and Park, H., 2002. Characterization of Humic Substances Present 
in Landfill Leachates with Different Landfill Ages and Its Implications. Water Research
36: 4023-4032.  
 
Kappeler, J., and Gujer, W., 1992. Estimation of Kinetic Parameters of Heterotrophic 
Biomass under Aerobic Conditions and Characterization of Wastewater for Activated 
Sludge Modelling. Water science and technology, 25(6): 125-139. 
 

background image

 131  

Keenan, J.D., Steiner, R.L., and Fungaroli, A.A.,  1984. Landfill Leachate Treatment.  
Journal of Water Pollution Control Federation, 56(1): 27-33. 
 
Kennedy K. J., Hamoda M. F., and Guiot S. G., 1988. Anaerobic Treatment of Leachate 
using Fixed Film and Sludge Bed Systems. Journal of Water Pollution Control Federation
60:1675-1683.  
 
Kennedy, K., and Lentz, E., 2000. Treatment of Landfill Leachate Using Sequencing Batch 
and Continuous Flow Upflow Anaerobic Sludge Blanket (UASB) Reactors. Water 
Research
, 34(14): 3640-3656. 
 
Kettunen, R.H., Hoilijoki, T.H., and Rintala, J.A., 1996. Anaerobic and Sequential 
Anaerobic-Aerobic Treatment of Municipal Landfill Leachate at Low Temperature. 
Bioresource Technology, 58(1): 31-40. 
 
Kim, C.W., Kim, B. G., Lee, T.H., and Park, T.J., 1994. Continuous and Early Detection of 
Toxicity in Industrial Wastewater Using an On-line Respiration Meter, Water Science and 
Technology,
 30(3): 11-19. 
 
Kim, J.S., Lee, C.H., and Chang, I.S., 2001. Effect of Pump Shear on the Performance of a 
Crossflow Membrane Bioreactor. Water Research, 35: 2137-2144. 
 
Kim, J.S., Lee, C.H., and Chun, H.D., 1998. Comparison of Ultrafiltration Characteristics 
between Activated Sludge and BAC Sludge. Water Research, 32: 3443-3451. 
 
Kim, S.M., Geissen, S.U., and Vogelpohl, A., 1997. Landfill leachate Treatment by a 
Photoassisted Fenton Reaction. Water Science and Technology, 35(4): 239-248. 
 
Knox, K., and Jones, P.H., 1979. Complexation Characteristics of Sanitary Landfill 
Leachates. Water Research, 27: 405-411. 
 
Knox, K., 1985. Leachate Treatment with Nitrification of Ammonia. Water Research, 19 
(7): 895-904. 
 
Krauth, K.H., and Staab, K.F., 1993. Pressurized Bioreactor with Membrane Filtration for 
Wastewater Treatment. Water Research, 27: 405-411.  
 
Krug A.T., and Mcdougall, S., 1988, Preliminary of a Microfiltration/Reverse Osmosis 
Process for the Treatment of Landfill Leachate
. Environmental Ontario Environmental 
Research Technology Transfer Conference, 28-29 Nov, Toronto, Canada. 
 
Kylefors, K., 1997. Landfill Leachate Management- Short and Long Term Perspectives
Luleå University of Technology, Sweden: ISSN: 1402-1757. 
 
LaGrega, M.D., Buckingham, P.L., and Evans, J.C., 1994. Hazardous Waste Management
McGraw-Hill, USA: 0-07-019552-8. 
 
Leckie, J.O., Pacey, J.G., and Halvadakis, C., 1975. Acceleration Refuse Stabilization 
Through Controlled Moisture Application
. Paper Presented in the 2

nd

 Annual National 

Environmental Engineering Research Development and Design, Gainsville, Florida, USA.  

background image

 132  

Leckie, J.O., Pacey, J.G., and Halvadakis, C., 1979. Landfill Management with Moisture 
Control. Journal Environmental Engineering Division, ASCE, 105(EE2): 337-355.  
 
Lecoupannce, F., 1999. Fractionnement et Caracterisation des Lixiviats de  Centres 
D’enfouissement de D’echets Menagers par Chromatographie Liquide (Fractionation and 
Characterization of Sanitary Landfill Leachates by Liquid Chromatography)
. Ph.D. 
Thesis, Universite de Bretagne-Sud, France. 
 
Lee, C.J., 1979. Treatment of Municipal Landfill Leachate. Master Thesis, University of 
British Columbia, Canada. 
 
Lema, J.M., Mendez, R., and Blazquez, R., 1988. Characteristics of Landfill Leachates and 
Alternatives for Their Treatment: A Review. Water, Air and Soil Pollution, 40: 223-250 
 
Liao, B.Q., Allen, D.G., Droppo, I.G., Leppard, G.G., and Liss, S.N., 2001. Surface 
Properties of Sludge and Their Role in Bioflocculation and Settleability. Water Research
35: 339-350. 
 
Liebeskind, M., 1999. Parameter for Dynamic Simulate of Municipal Sewage Treatment 
Plant (German). Gewaessersghutz Wasser Abwasser No 171, Aachen Technical University. 
 
Lin, S.H., and Chang, C.C., 2000. Treatment of Landfill Leachate by Combined Electro-
Fenton Oxidation and Sequencing Batch Reactor Method. Water Research, 34(17): 4243-
4249. 
 
Lowry, O.H.,  Resebrough, N.J., Farr, A.L., and Randall, R., 1951. Protein Measurement 
with the Folin Phenol Rreagent. Journal of Biological Chemistry, 193: 265-275. 
 
Lubbecke, S., Vogelpohl, A., and Dewjanin, W., 1995. Wastewater Treatment in a 
Biological High-Performance System with High Biomass Concentration. Water Research
29: 793-802. 
 
Madoni, P., Davoli, D., and Guglielmf, L., 1999. Response of SOUR and AUR to Heavy 
Metal Contamination in Activated Sludge, Water Research, 33(10): 2459-2464. 
 
Madoni, P., Davoli, D., Gorbi, G., and Vescovi, L., 1996. Toxic Effect of Heavy Metals on 
the Activated Sludge Protozoan Community, Water Research, 30: 135-141.  
 
Mallevialle, J., Odendaal, P.E., and Wiesner, M.R., 1996. Water Treatment Membrane 
Processes
. McGraw-Hill, USA: ISBN: 0-07-001559-7. 
 
Mandra, V., Amar, D., Trouve, E., Courant, P., and Coulomb, I., 1995. Membrane 
Bioreactor and Reverse Osmosis Coupling for the Treatment of Discharge Leachates. 
Proceedings of International Workshop Membrane in Drinking Water Production
International Water Supply Association, Paris, France: 33-38. 
 
Manem, J., 1993. Membrane Bioreactors for Wastewater Treatment and Drinking Water 
Production.  Proceedings of the 3

rd

 World Congress of the World Federation of 

Engineering Organizations, Beijing, China: 907-914.  
 

background image

 133  

Martin, G.M.A., Auzmenti, A.I., and Olozaga, C.P., 1995. Landfill Leachate: Variation in 
Quality and Quantity. Proceedings of Sardinia’ 95,

 

5

th

 International Landfill Symposium

Cagliari, Italy: 345-354. 
 
Marttinen, S.K., Kettunen, R.H., Sormunen, K.M., Soimasuo, R.M., and Rintala, J.A., 
2002. Screening of Physical-Chemical Methods for Removal of Organic Material, 
Nitrogen and Toxicity from Low Strength Landfill Leachates.  Chemosphere, 46: 851-858. 
 
Mavinic, D.S., 1998. Leachate Quality: Effects on Treatability. Proceedings of the 
International Training Seminar: Management and Treatment of MSW Landfill Leachate

2-4 December, Venice, Italy.  
 
McBean, E.A., Rovers, F.A., and Farquhar, G.J., 1995. Solid Waste Landfill Engineering 
and Design
. Prentice-Hall, Inc. New Jersey, USA: ISBN: 0-13-079187-3. 
 
McCann, B., 2002. The Secret of Success, Water 21, 8: 42-43. 
 
Mejbri, R., Matejka, G., Lafrance, P., and Mazet, M., 1995. Fractioonnement et 
Caracterisatioon de la Matiere Organique des Liziviats de Decharges D’ordures Menageres 
(Fractionation and Characterization of the Organic Matter in Sanitary Landfill Leachates). 
Rev. Sci. de l’Eau, 8: 217-236. 
 
Mendez, R., Lema, J.M., Blazquez, R., Pan, M., and Forjan, C., 1989. Characterization, 
Digestibility and Anaerobic Treatment of Leachates from Old and Young Landfills. Water 
Science and Technology
, 21: 145-155. 
 
Mishra, P.N., Sutton, P.M., and Mourato, D., 1996. Industrial Wastewater Biotreatment 
Optimization through Membrane Applications. Proceedings 89

th

 Mtg. Air and Waste 

Management Association, Nashville. 
 
Miskiewicz, T., Oleszkiewicz, J.A., Kosinska, K., Koziarski, S., Kramarz, M., and 
Ziobrowski, J., 1982. Dynamic Tests on Yeast Production from Piggery Effluents. 
Agriculture Wastes, 4: 3-15. 
 
Morgan, W.S.G., and Villiers, R.H., 1978. Rapid Assessment of Water Quality Using 
Protozoan Respiratory Responses to Intoxication
. Presented at the Biennial conference of 
the Institute of Water Pollution Control (South African Branch). 
 
Morgan, J.W., Froster, C.F., and Evison, L., 1990. A Comparative Study of the Nature of 
Biopolymers Extracted from Anaerobic and Activated Sludges. Water Research, 24(6): 
743-750.  
 
Mukai, T., Takimoto, K., Kono, T., and Okada, M., 2000. Ultrafiltration Behaviour of 
Extracellular and Metabolic Products in Activated Sludge System with UF Separation 
Process. Water Research, 34: 902-908. 
 
Muller, E.B., Stouthamer, A.H., Vanverseveld H.W., and Eikelboom, D.H., 1995. Aerobic 
Domestic Wastewater Treatment in a Pilot Plant with Complete Sludge Retention by Cross 
Flow Filtration. Water Research, 29, 1179-1189. 
 

background image

 134  

Nagano, A., Arikawa, E., and Kobayashi, H., 1992. The Treatment of Liquor Wastewater 
Containing High Strength Suspended Solids by Membrane Bioreactor System. Water 
Science and Technology
, 26(3-4): 887-895. 
 
Nagaoka, H., 1999. Nitrogen Removal by Submerged Membrane Separation Activated 
Sludge Process. Water Science and Technology, 39: 107-114. 
 
Nagaoka, H., Ueda, S., and Miya, A., 1996. Influence of Bacterial Extracelluar Polymers 
on The Membrane Separation Activated Sludge Process. Water Science and Technology
34:165-172. 
 
Nedwell, D., and Reynolds, P., 1996. Treatment of Landfill Leachate by Methanogenic and 
Sulphate-Reducing Digestion.  Water Research, 30(1): 21-28. 
 
Nielson, P.H., and Jahn, A., 1999. Extraction of EPS. In: Microbial Extracellular 
Polymeric Substances
. Edited by Wingender, J., Neu, T.R., and Flemming, H.C., Springer, 
Berlin, Germany: 49-72. 
 
Nishihara ESRC Ltd., 2001. Technical Details of the Yeast Cycle System. Personal 
Communication and Company Process Catalog. 
 
Oladimeji, A.A., and Offem, B.O., 1989. Toxicity of Lead to Claria lazera, Orechromis 
niloticus, Chironomus tentens, and Benacus sp. Water Air and Soil Pollution, 44: 191-201. 
 
Ortiz, C.P., Steyer, J.P., and Bories, A., 1997. Carbon and Nitrogen Removal from 
Wastewater by Candida utilis: Kinetics Aspects and Mathematical Modelling. Process 
Biochemistry
, 32(3): 179-189.  
 
Ozturk, I., Altinbas, M., Arikan, O., Tuyluoglu, B.S., and Basturk, A., 1999. Anaerobic 
and Chemical Treatability of Young Landfill Leachate. Proceedings of 7

th

 International 

Waste Management and Landfill Symposium, 4-8 October, Cagliari, Italy: 311-318. 
 
Palit, T., and Qasim, S.R., 1977. Biological Treatment Kinetics of Landfill Leachate. 
Journal of Environmental Engineering Division, ASCE, 103(EE2): 353-366. 
 
Patterson, W.J., Brezonik, L.P., and Putnam, H.D., 1970. Sludge Activity Parameters and 
Their Application to Toxicity Measurements and Activated Sludge. Proceeding 24

th

 

Industrial Waste Conference, Indiana, USA. 
 
Peters, T., 1997. Treatment of Landfill Leachate by Reverse Osmosis. Proceedings 
Sardinia’ 97, 6

th

 International Landfill Symposium, 13-17 October, Cagliari, Italy. 

 
Pirbazari, M., Ravindran, V., Badriyha, B.N., and Kim, S.H., 1996. Hybrid Membrane 
Filtration Process for Leachate Treatment. Water Research, 30(11): 2691-2706. 
 
Pohland, F.G., 1972. Landfill Stabilization with Leachate Recycle. Interim Progress 
Report, Solid Waste Research Division, U.S.EPA, Ohio, USA. 
 
Pohland, F.G., 1975. Sanitary Landfill Stabilization with Leachate Recycle and Residual 
Treatment
, EPA 600/2-75-043, U.S. EPA, Ohio, USA. 

background image

 135  

Pohland, F.G., and Harper, S.R., 1985. Critical Reviews and Summary of Leachate and 
Gas Production from Landfills
. EPA Report Number 600/2-86/073. 
 
Pohland, F.G., Stratakis, M., Cross, W.H., and Tyahla, S.F., 1990. Controlled Landfill 
Management of Municipal Solid Waste and Hazardous Wastes. Proceedings of 1990 
WPCF National Specialty Conference on Water Quality Management of Landfills
, 15-18 
July, Illinois, USA: 3-16 – 3-32. 
 
Pohland, F.G., and Kim, J.C., 1999. In Situ Anaerobic Treatment of Leachate in Landfill 
Bioreactors. Water Science and Technology, 40(8): 203 -210.  
 
Pollution Control Department, 2000. Research and Development of Landfill Leachate 
Treatment
. Ministry of Science, Technology and Environment. Bangkok, Thailand: ISBN: 
9-74-787938-7.  
 
Pouet, M.F., and Grasmicj, A., 1995. Microfiltration of Urban Wastewater: the Roles of 
the Different Organic Fractions in Fouling the Membrane. Proceeding Euromembrane’95, 
University of Bath, England: 482-486. 
 
Praet, E., Jupsin, H., El Mossaoui, M., Rouxhet, V., and Vasel, J.L., 2001. Use of a 
Membrane Bioreactor and an Activated Carbon Adsorber for the Treatment of MSW 
Landfill Leachates, Proceedings Sardinia’01, 8

th

 International Waste Management and 

Landfill Symposium, Cagliari, Italy. 
 
Qasim, S.R., and Chiang, W., 1994. Sanitary Landfill Leachate- Generation, Control and 
Treatment
. Technomic Publishing Co., Inc. Pennsylvania, USA: ISBN: 1-56-676129-8. 
 
Ragle N., Kissel, J.C., Ongerth, J.E., and DeWalle F.B., 1995. Composition and Variability 
of Leachate from Recent and Aged Areas within a Municipal Landfill. Water Environment 
Research
, 67(2):238-243, 1995. 
 
Raina, S., and Malvinic, D.S., 1985. Comparison of Fill and Draw Reactors for Treatment 
of Landfill Leachate. Water Pollution Research Journal, of Canada, 20(2): 12-28. 
 
Rautenbach R., and Albrecht, R., 1989. Membrane Processes, John Wiley and Sons Ltd.: 
ISBN: 0-47-191110-0. 
 
Rautenbach, R., and Mellis, R., 1994. Wastewater Treatment by a Combination of 
Bioreactor and Nanofiltration. Desalination, 95: 171-188. 
 
Reeves, T.G., 1972. Nitrogen Removal: A Literature Review. Journal of Water Pollution 
Control Federation
, 44(10): 1895-1908. 
 
Reeves, J.B., 1976. Activated Sludge System Influent Toxicity Monitoring through 
Utilization of Commercial, Continuous Respirometer
. N.S. Dissertation, Virginia 
Polytechnic Institute and State University, USA.  
  
Robinson, H.D., and Grantham, G., 1988. The Treatment of Landfill Leachates in On-site 
Aerated Lagoon Plants: Experience in Britain and Ireland. Water Research, 22(6): 733-
747. 

background image

 136  

Robinson, H.D., and Luo, M.M.H., 1991. Characterization and Treatment of Landfill 
Leachates from Hong Kong Landfill Sites. Journal of Institute Water and Environmental 
Management
, 5: 326-335. 
 
Robinson, H.D., Barr, M.J., and Last, S.D., 1992. Leachate Collection, Treatment and 
Disposal. Journal of Institute Water and Environmental Management, 6: 321-332. 
 
Robinson, H.D., and Maris, P.J., 1983. The Treatment of Leachates from Domestic Wastes 
in Landfills–I: Aerobic Biological Treatment of Medium-Strength Leachate. Water 
Research,
 17(11): 1537-1548 
 
Robinson, H.D., and Maris, P.J., 1985. The Treatment of Leachates from Domestic Waste 
in Landfill Sites, Journal of Water Pollution Control Federation, 57(1): 30-38. 
 
Robinson, H.D., 1999. State of the Art Landfill Leachate Treatment Systems in the UK and 
Ireland. Waste Science and Research, England. 
 
Rodney, F.B., 1993. Modern Experimental Biochemistry. 2

nd

 Edition, USA: 

Benjamin/Cummings Pub. Co.: ISBN: 0-80-530545-9. 
 
Rosenberg, S., Kraume, M., and Szewzyk, U., 1999. Operation of Different Membrane 
Bioreactors: Experimental Results and Physiological State of the Microorganisms. 
Proceedings Membrane Technology in Environmental Management, Tokyo, Japan: 310-
316. 
 
Sanin, D., and Vsilind. P.A., 2000. Bioflocculation of Activated Sludge: The Role of 
Calcium Ions and Extracellular Polymers. Environmental Technology, 21: 1405-1412.  
 
Sato, T., and Ishii, Y., 1991. Effects of Activated Sludge Properties on Water Flux of 
Ultration Membrane Used for Human Excrement Treatment. Water Science and 
Technology
, 23: 1601-1608.  
 
Sawyer, C.N., McCarty, P.L., and Parkin, G.F., 1994. Chemistry for Environmental 
Engineering
. McGraw-Hill, USA: ISBN: 0-07-113908-7. 
 
Schrab, G.E., Brown, K.W., and Donnelly, K.C., 1993. Acute and Genetic Toxicity of 
Municipal Landfill Leachate. Water Air and Soil Pollution, 69: 99-112. 
 
Schuk, W.W., and James, S.C., 1986. Treatment of Landfill Leachate at Publicly Owned 
Treatment Works. Waste Management and research, 4: 265-277. 
 
Scioli, C., and Vollaro, L., 1997. Use of Yarrowia lipolytica to Reduce Pollution in Olive 
Mill Wastewaters. Water Research, 31(10): 2520–2524. 
 
Scott, J.A., and Smith, K.L., 1997. A Bioreactor Coupled to a Membrane to Provide 
Aeration and Filtration in Ice-Cream Factory Wastewater Remediation. Water Research
31(1): 69-74. 
 

background image

 137  

Shin, H.S., An, H., Kang, S.T., Choi, K.H., and Jun, K.S., 1999. Fouling Characteristics in 
Pilot Scale Submerged Membrane Bioreactor. Proceeding 1

st

 WEFTEC’ 99, New Orleans, 

USA. 
 
Siegrist, H., Reithaar, S., and Lais, P., 1998. Nitrogen Loss in a Nitrifying Rotating 
Contactor Treating Ammonium Rich Leachate without Organic Carbon. Water Science 
and Technology
, 37(4-5): 589–591. 
 
Sivapornpun, V., 2000. Heavy Metals in Landfill Leachate: Options for Reduction and 
Treatment
. Master Thesis, Asian Institute of Technology, Thailand. 
 
Slater, C.S., Uchrin, C.G., and Ahlert, R.C., 1985. Ultrafiltration Processes for the 
Characterization and Separation of Landfill Leachate. Journal of Environmental science 
Health
, A20(1): 97-111. 
 
Smith, P.G., and Arab, F.K., 1988. The Role of Air Bubbles in the Desorption of Ammonia 
from Landfill Leachates in High pH Aerated Lagoon. Water, Air and Soil Pollution, 38: 
333-343. 
 
Solyom, P., 1977. Industrial Experiences with Toxiguard, a Toxicity Monitoring System. 
Prog. Water Technology, 9: 193-198. 
 
Solyom, P., Boman, B., and Bjorndal, H., 1976. Continuous Monitoring of Acute-Toxic 
Substances in Wastewater. Prog. Water Technology, 8: 417-422. 
  
Srinath, E.G., and Loehr, R.C., 1974. Ammonia Desorption by Diffused Aeration. Journal 
of Water Pollution Control Federation
, 46(8): 1939-1957. 
 
Steensen, M., 1993. Removal of Non-biodegradable Organics from Leachate by Chemical 
Oxidation. Proceedingd Sardina’ 93, 4

th

 International Landfill Symposium, Cagliari, Italy: 

945-958. 
 
Steensen, M., 1997. Chemical Oxidation for the Treatment of Leachate-Process 
Comparison and Results from Full-Scale Plants. Water Science and Technology, 35(4): 
249-256. 
 
Stephenson, T., Judd, S., Jefferson, B., and Brindle, K., 2000. Membrane Bioreactors for 
Wastewater Treatment
.  IWA Publishing: ISBN: 1-90-022207-8. 
 
Strachan, L.J., Trois, C., Robinson, H.D., and Olufsen, J.S., 2000. Appropriate Biological 
Treatment of Landfill Leachate with Full Nitrification and Denitrification. Conference 
Proceedings, WISA 2000
, Sun City, South Africa. 
 
Suflita, J.M., Gerba, C.P., Ham, R.K., Palmisano, A.C., Rathje, W.L., and Robinson, J.A., 
1992. The World’s Largest Landfill: Multidisciplinary Investigation. Environmental 
Science Technology
, 26: 1486-1494. 
 
Sun, D.D., Zeng, J.L., and Tay, J.H., 2002. A Submerged Tubular Ceramic Membrane 
Bioreactor for High Strength Wastewater Treatment. Water Science and Technology
47(1): 105-111. 

background image

 138  

 Talinli, I., and Tokta, S., 1994. Oxygen Uptake Rate Inhibition Test: A Modified Method 
for Priority Pollutants. Environmental Technology, 15: 979-988. 
 
Tatsi, A.A., and Zouboulis, A.I., 2002. A field investigation of the quantity and quality of 
leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, 
Greece). Advances in Environmental Research, 6: 207-219. 
 
Tchobanoglous, G., Burton, F.L., and Stensel, H.D., 2003. Wastewater Engineering: 
Treatment and Reuse
. 4

th

 Edition, McGraw-Hill, USA: ISBN: 0-07-112250-8. 

 
Temmink, H., Vanrolleghem, P., Klapwijk, A., and Verstraete, W., 1993. Biological Early 
Warning Systems for Toxicity Based on Activated Sludge Respirometry, Water Science 
and Technology
, 28(11-12): 415-425. 
 
Thurman, E.M., and Malcolm, R.L., 1981. Preparative Isolation of Aquatic Substances. 
Environmental Science and Technology, 15: 463-466. 
 
Timur, H., and Ozturk, I., 1999. Anaerobic Sequencing Batch Reactor Treatment of 
Landfill Leachate. Water Research, 33(15): 3225-3230. 
 
Trankler, J., Manandhari, D.R., Xiaoning, Q., Sivapornpun, V., and Scholl, W., 2001. 
Effects of Monsooning Conditions on the Management of Landfill Leachate in Tropical 
Countries.  Proceedingd Sardina’ 01, 8

th

 International Waste Management and Landfill 

Symposium, Cagliari, Italy: 59-68. 
 
Tsai, C.T., Lin, S.T., Shue, Y.C., and Su, P.L., 1997. Electrolysis of Solution Organic 
Matter in Leachate from Landfills. Water Research, 31(12): 3073-3081. 
 
Turk, O., and Mavinic, D.S., 1989. Maintaining Nitrite Build-Up in a System Acclimatized 
to Free Ammonia, Water Research, 23 (11): 1383-1388. 
 
Ueda, T., Hata, K., and Kikuoka, Y., 1996. Treatment of Domestic Sewage from Rural 
Settlements by a Membrane Bioreactor. Water Science and Technology, 34: 189-196. 
 
Uloth, V.C., and Mavinic, D.S., 1977. Aerobic Biotreatment of High Strength Leachate. 
Journal of the Environmental Engineering Division, ASCE, 103(EE6): 647-661. 
 
Vanrolleghem, P.A., Spanjers, H., Petersen, B., Ginestet, P., and Takacs, I., 1999. 
Estimating (combination of) activated Sludge Model No. 1 Parameters and Components by 
Respirometry. Water Science and technology, 39(1): 195-214. 
 
Venkatadri, R., and Peters, R.W., 1993. Chemical Oxidation Technologies: Ultraviolet 
Light/Hydrogenperoxide, Fenton’s Reagent and Titanium Dioxide-Assisted Photocatalysis. 
Hazardrous Waste and Hazardrous Materials, 10(2): 107-149. 
 
Vicevic, G.P.., Top, P.J., and Laughlin, R.G.W., 1992. Aerobic and Anaerobic Fixed Film 
Biological Reactors. In: Landfill of Waste: Leachate. Edited by Christensen, T.H., Cossu, 
R., and Stegmann, R. Elsevier Science Publishers Ltd., England: ISBN: 1-85-166733-4: 
229-243. 
 

background image

 139  

Visvanathan, C., Ben Aim, R., and Parameshwaran, K., 2000. Membrane Separation 
Bioreactors for Wastewater Treatment. Environmental Science and Technology, 30(1): 1-
48.  
 
Visvanathan, C., Trankler, J., Kuruparan, P., and Xiaoning, Q., 2003.  Effects of 
Monsooning Conditions on the Generation and Composition of Landfill Leachate- 
Lysimeter Experiments with Various Input and Design Features. Proceeding Sardinia’03, 
9

th

 International Waste Management and Landfill Symposium, Cagliari, Italy. 

 
Webber, W.J., and Smith, E.H., 1986. Removing Dissolved Organic Contaminants from 
Water.  Environmental Science and Technology, 20(10): 970-979. 
 
Weber, B., and Holz, F., 1992. Combination of Activated Sludge Pre-treatment and 
Reverse Osmosis. In: Landfill of Waste: Leachate. Edited by Christensen, T.H., Cossu, R., 
and Stegmann, R. Elsevier Science Publishers Ltd., England: ISBN: 1-85-166733-4: 323-
332. 
 
Welander, U., Henrysson, T., and Welander, T., 1998. Biological Nitrogen Removal from 
Municipal Landfill Leachate in Pilot Scale Suspended Carrier Biofilm Process. Water 
Research
, 32(5): 1564-1570. 
 
Wisniewski, C., and Grasmick, A., 1998. Floc Size Distribution in a Membrane Bioreactor 
and Consequences for Membrane Fouling. Colloids and Surfaces A, 138: 403-411. 
 
Wisniewski, C., Grasmick, A., and Cruz, A.L., 2000. Critical Particle Size in Membrane 
Bioreactor Case of a Denitirifying Bacterial Suspension. Journal of Membrane Science
178: 141-150. 
 
Wong, P.T., and Mavinic, D.S., 1984. Treatment of a Municipal Leachate under Multi-
Variable Conditions. Journal of Water Pollution Control Federation, Research, Canada. 
 
Wu, Y.C., Hao, O.J., Ou. K.C., and Scholze, R.J., 1988. Treatment of Leachate from a 
Solid Waste Landfill Site Using a Two-Stage Anaerobic Filter. Biotechnology and 
Bioengineering
, 31: 257-266. 
 
Yalmaz, G., and Öztürk, I., 2001. Biological Ammonia Removal from Anaerobically Pre-
treated Landfill Leachate in Sequencing Batch Reactors (SBR). Water Science and 
Technology
, 43 (3): 307-314 
 
Yamamoto, K., Hissa, M., Mahmood, T., and Matsuo, T., 1989. Direct Solid Liquid 
Separation Using Hollow Fiber Membrane in an Activated Sludge Aeration Tank. Water 
Science and Technology
, 21: 43-54. 
 
Yangin, C., Yilmaz, S., Altinbas, M., and Ozturk, I., 2002. A New Process for the 
Combined Treatment of Municipal Wastewaters and Landfill Leachates in Coastal Areas. 
Water Science and Technology, 46(8): 111-118. 
 
Yoon, J., Cho, S., Cho, Y., and Kim, S., 1998. The Characteristics of Coagulation of 
Fenton Reaction in the Removal of Landfill Leachate Organics. Water Science and 
Technology
, 38(2): 209-214. 

background image

 140  

Zaloum, R., and Abbott, M., 1997. Anaerobic Pretreatment Improves Single Sequencing 
Batch Reactor Treatment of Landfill Leachates. Water Science and Technology, 35(1), 
207-214. 
 
Zapf-Gilje, R., and Mavinic, D.S., 1981. Temperature Effects on Biostabilization of 
Leachate. Journal of the Environmental Engineering Division, ASCE, 107(EE4): 653-663. 
 

background image

 141 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix A 

 

Pictures of Experiments

background image

 142 

  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure A-1 YMBR and BMBR Reactors 

background image

 

 143  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-2 Color Comparison of Raw Leachate with Selected Water after Treatment  

     (MBR System) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure A-3 Color Comparison of Raw Leachate with Selected Water after Treatment 

     (Coupling Ammonia Stripping with MBR System) 
 
 
 
 

R a w   L e a c h a te

Y M B R   E fflu e n t

B M B R   E fflu e n t

R a w   L e a c h a te

Y M B R   E fflu e n t

B M B R   E fflu e n t

background image

 

 144  

 

Figure A-4 Characteristics of Membrane 

 

New Membrane

After Long-run

(YMBR)

After Washing 

with Tap Water

After Chemical 

Cleaning

After Long-run

(BMBR)

New Membrane

After Long-run

(YMBR)

After Washing 

with Tap Water

After Chemical 

Cleaning

After Long-run

(BMBR)

New Membrane

After Long-run

(YMBR)

After Washing 

with Tap Water

After Chemical 

Cleaning

After Long-run

(BMBR)

background image

 

 145  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix B 

 

Leachate Characteristics and  

Experimental Data of Acclimation 

background image

 

 146  

Table B-1 Leachate Characteristic of the Primary Sources and the Feed 
 

Pathumthani Landfill Site 

Ram-Indra Transfer Station 

Feed 

 

Sample No. 

NH

4

+

-N 

(mg/L) 

TKN 

(mg/L) 

COD 

(mg/L) 

NH

4

+

-N 

(mg/L) 

TKN 

(mg/L) 

COD 

(mg/L) 

NH

4

+

-N 

(mg/L) 

TKN 

(mg/L) 

COD 

(mg/L) 

2,184  2,349 5,410 349 1,292 

87,200 

1,831 2,013 7,412 

1,820  1,968 3,660 333 1,247 

85,020 

1,537 1,719 7,521 

1,691  1,882 4,230 319 1,652 

73,840 

1,562 1,848 7,692 

1,691  1,882 4,100 336 1,249 

32,190 

1,604 1,893 8,195 

1,781  2,050 3,940 448 1,361 

34,280 

1,669 1,957 7,200 

1,756  2,019 4,170 333 1,226 

33,330 

1,753 1,982 7,000 

1,607  1,884 3,288  409  921  31,151 1,417 1,750 7,233 

1,719  2,044 3,243  434  879  32,432 1,442 1,764 7,135 

background image

 147 

Table B-2 Acclimation of Mixed Yeast Sludge to Landfill Leachate Containing High 
Organic and Ammonia Concentration 

 

COD (mg/L) 

Time 

(days) 

Influent Effluent 

COD Removal 

(%) 

MLSS 

(mg/L) 

F/M ratio 

(d

-1

1 3,800 

2,090  45 3,750 

1.01 

3 3,800 

1,710  55 3,933 

0.97 

6 4,000 

1,440  64 4,233 

0.94 

9 4,000 

1,320  67 4,533 

0.88 

12 4,150 

1,287  69 4,800 

0.86 

14 4,150 

1,245  70 5,367 

0.77 

17 4,320 

1,210  72 5,633 

0.77 

21 4,320 

1,166  73 6,240 

0.69 

25 4,800 

1,296  73 6,560 

0.73 

29 4,800 

1,248  74 6,740 

0.71 

35 4,800 

1,200  75 7,040 

0.68 

39 5,530 

1,438  74 7,540 

0.73 

42 5,530 

1,327  76 8,167 

0.68 

44 5,,530 

1,272  77  8,667 

0.64 

46 6,105 

1,526  75 9,800 

0.62 

50 6,105 

1,404  77 10,450 

0.58 

52 7,071 

1,697  76 10,750 

0.66 

54 7,071 

1,838  74 11,240 

0.63 

56 7,300 

1,898  74 11,400 

0.64 

58 7,300 

1,825  75 11,950 

0.61 

61 7,300 

1,898  74 11,850 

0.62 

67 7,300 

1,825  75 11,700 

0.62 

 

background image

 148 

Table B-3 Acclimation of Mixed Bacteria Sludge to Landfill Leachate Containing High 
Organic and Ammonia Concentration 

 

COD (mg/L) 

Time 

(days) 

Influent Effluent 

COD Removal 

(%) 

MLSS 

(mg/L) 

F/M ratio 

(d

-1

1 3,800 

2,014  47 2,620 

1.45 

3 3,800 

1,786  53 2,667 

1.42 

6 4,000 

1,640  59 2,860 

1.40 

9 4,000 

1,600  60 3,060 

1.31 

12 4,150 

1,577  62 3,300 

1.26 

14 4,150 

1,577  62 3,740 

1.11 

17 4,320 

1,555  64 3,880 

1.11 

21 4,320 

1,469  66 4,233 

1.02 

25 4,800 

1,632  66 4,467 

1.07 

29 4,800 

1,632  66 4,833 

0.99 

35 4,800 

1,680  65 5,150 

0.93 

39 5,530 

1,880  66 5,260 

1.05 

42 5,530 

1,880  66 5,367 

1.03 

44 5,530 

1,825  67 5,480 

1.01 

46 6,105 

2,076  66 5,733 

1.06 

50 6,105 

2,198  64 6,260 

0.98 

52 7,071 

2,616  63 6,380 

1.11 

54 7,071 

2,475  65 6,360 

1.11 

56 7,300 

2,628  64 6,340 

1.15 

58 7,300 

2,482  66 6,380 

1.14 

61 7,300 

2,555  65 6,380 

1.14 

67 7,300 

2,482  66 6,420 

1.14 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

background image

 149 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix C 

 

Experimental Data of Biokinetic Study and Toxicity Study 

 
 

background image

 150 

C.1 OUR Determination 
 

In this study a selected volume of wastewater of known total COD is mixed with a 

selected volume of mixed liquor of known MLVSS concentration in a batch reactor. After 
mixing, the OUR is measured approximately every 5 to 10 minutes until OUR attains to a 
constant value that is approximate or equal to OUR in the endogenous phase (Ekama, et al.
1986). The respirogram is obtained by plotting the curve of OUR versus time as shown in 
Figure C-1. 

 

 
 
 

 

 

 

 

 

 

 
 

 

Figure C-1 OUR Response in Respirometer (Ekama, et al., 1986) 

Where 
 

Area A:  

This area gives the concentration of readily biodegradable COD 
oxidized by the biomass.  

 
Area B:  

This area represents the amount of less readily biodegradable 
material being oxidized. 

 
Area C:  

This area shows the amount of oxygen being used to convert 
ammonia into oxidized nitrate (nitrification).  

 
 Area D:  

The area under the whole curve shows the total oxygen demand of 
the liquor. This is the total amount of oxygen which must be 
supplied to the sludge to achieve full treatment. 

 
OUR at line e:   The respiration rate at the end of the curve is the endogenous 

respiration rate. This rate is proportional to the activity of the 
biomass. 

 
OUR at line f:  This rate is the average respiration rate for the period where 

nitrification and the breakdown of less readily biodegradable 
substrates are occurring.  

 

f

A

B

C

D

T

g

e

Time (min)

OUR (m

g

/L

.h

)

f

A

B

C

D

T

f

A

B

C

D

T

g

e

Time (min)

OUR (m

g

/L

.h

)

g

e

Time (min)

OUR (m

g

/L

.h

)

background image

 151 

OUR at line g:  This is the maximum respiration rate observed at the start-up of the 

respiration cycles. At this point all oxidative reactions take place, 
including the oxidation of carbon and nitrogen. 

 
Time T:  

The time for the sample to reach an endogenous respiration rate.  

 

Specific OUR of substrate oxidation at a substrate concentration S (OUR

x,ox

is given 

by: 

e

X

t

X

ox

X

OUR

OUR

OUR

,

,

,

=

 

(C-1)

Where: 
 

OUR

x,t 

Total respiration rate (mg O

2

/mg VSS.h) 

OUR

x,e 

Endogenous respiration rate (mg O

2

/mg VSS .h)  

 

Further specific substrate removal rate at a substrate concentration S (

R

X

) is given by: 

 

S

OC

OUR

R

ox

X

X

/

,

=

 

(C-2)

Where 

R

Substrate removal rate (mg COD removed/mg VSS.h) 

OC

 

Net oxygen consumption (mg O

2

/L) 

S

 

Substrate concentration (mg COD/L) 

 

OC is then equal to the area between the OUR curve and the second plateau level 

where the OUR decreases rapidly and levels off (

OC = Area A+area B) (Figure C-1) 

 

Biomass yield coefficient (

Y) is expressed as: 

⎛ −

=

S

OC

f

Y

1

1

 

(C-3)

and the specific growth rate (

µ

 ) as: 

X

R

Y.

=

µ

 

(C-4)

Where 

µ

 

Specific growth rate (h

-1

COD/VSS ratio of the sludge (mg COD/mg VSS)  

Y

 

Yield coefficient (mg VSS/mg COD removed) 

 
 

background image

 152 

Table C-1 Biokinetic Experimental Data of Mixed Bacterial Sludge with Leachate 

 

(mg COD/L) 

OUR

x,t

 

(mg O

2

/mg VSS. h) 

OUR

x,e

 

(mg O

2

/mg VSS. h) 

OC 

 (mg O

2

/L) 

OUR

x,ox

 

(mg O

2

/mg VSS. h) 

OC/S 

  

r

x

 

(mg COD/mg VSS. h) 

Y

vss

 

(mg VSS/mg COD) 

µ 

(day

-1

7.0 0.0080 0.0036 3.3 0.0044 

0.47 

0.0093 

0.39 0.09 

14.0 0.0084  0.0039 3.4 0.0045 

0.24 0.0185 

0.56  0.25 

21.0 0.0082  0.0036 3.8 0.0047 

0.18 0.0259 

0.60  0.38 

42.0 0.0123  0.0042 10.7 0.0081 

0.25 0.0318 

0.55  0.42 

 
 
Table C-2 Biokinetic Experimental Data of Mixed Yeast Sludge with Leachate 
 

(mg COD/L) 

OUR

x,t

 

(mg O

2

/mg VSS. h) 

OUR

x,e

 

(mg O

2

/mg VSS. h) 

OC 

 (mg O

2

/L) 

OUR

x,ox

 

(mg O

2

/mg VSS. h) 

OC/S 

  

r

x

 

(mg COD/mg VSS. h) 

Y

vss

 

(mg VSS/mg COD) 

µ 

(day

-1

5.6  0.0031  0.0008 1.62 0.0023 0.29 0.0080 

0.50  0.09 

11.2  0.0040  0.0011 3.40 0.0029 0.30 0.0096 

0.49  0.11 

16.8  0.0052  0.0012 5.04 0.0040 0.30 0.0133 

0.49  0.16 

28.0  0.0097 

0.0016 10.40 0.0081 0.37  0.0218 

0.44  0.23 

40.8  0.0067 

0.0008 10.87 0.0059 0.27  0.0221 

0.51  0.27 

 
 
 
 
 
 
 
 
 
 
 

background image

 153 

Table C-3 Experimental Results for Ammonia Toxicity in Mixed Bacterial Sludge at COD Concentration of 7.0 mg/L 

 

NH

4

Cl 

(mg NH

4

-N/L)

OUR

x,t

 

(mg O

2

/mg VSS. h)

 

OUR

x,e

 

(mg O

2

/mg VSS. h)

OC 

 (mg O

2

/L)

 

OUR

x,ox

 

(mg O

2

/mg VSS. h)

 

OC/S 

 

 

r

x

 

(mg COD/mg VSS. h)

 

Y

vss

 

(mg VSS/mg COD)

 

µ 

(day

-1

)

 

70 0.0078 0.0031 

3.30 

0.0047 

0.47 

0.0100 

0.39 0.09 

1000 0.0062  0.0033 3.38 0.0029 

0.48 0.0060 

0.38  0.05 

1500 0.0066  0.0038 3.64 0.0028 

0.52 0.0054 

0.35  0.05 

2000 0.0061  0.0034 4.23 0.0027 

0.60 0.0045 

0.29  0.03 

 
 

Table C-4 Experimental Results for Ammonia Toxicity in Mixed Yeast Sludge at COD Concentration of 5.6 mg/L 

 

NH

4

Cl 

(mg NH

4

-N/L) 

OUR

x,t

 

(mg O

2

/mg VSS. h) 

OUR

x,e

 

(mg O

2

/mg VSS. h) 

OC 

 

(mg O

2

/L) 

OUR

x,ox

 

(mg O

2

/mg VSS. h) 

OC/S 

  

r

x

 

(mg COD/mg VSS. h) 

Y

vss

 

(mg VSS/mg COD) 

µ 

(day

-1

70 0.0031 0.0008 

1.62 

0.0023 

0.29 

0.0080 

0.50 0.09 

1000 0.0031  0.0009 1.67 

0.00225 

0.30 0.0075 

0.49  0.09 

1500 0.0030  0.0007 1.72 0.0023 

0.31 0.0075 

0.48  0.09 

2000 0.0031  0.0008 1.68 0.0023 

0.30 0.0077 

0.49  0.09 

 
 
 
 
 
 
 
 
 
 

 

background image

 154 

Table C-5 Experimental Results for Lead Toxicity of Mixed Bacteria Sludge at COD Concentration of 7.0 mg/L 
 

Pb(NO

3

)

2

 

(mg/L)

 

OUR

x,t

 

(mg O

2

/mg VSS. h)

 

OUR

x,e

 

(mg O

2

/mg VSS. h)

 

OC 

 (mg O

2

/L)

 

OUR

x,ox

 

(mg O

2

/mg VSS. h)

 

OC/S 

 

 

r

x

 

(mg COD/mg VSS. h)

 

Y

vss

 

(mg VSS/mg COD)

 

µ 

(day

-1

)

 

0 0.0078 0.0031 

3.30 

0.0047 

0.47 

0.0100  0.39 

0.09 

20 0.0061 0.0038 

2.77 

0.0023 

0.40 

0.0058 

0.44 0.06 

50 0.0051 0.0038 

2.22 

0.0013 

0.32 

0.0041 

0.50 0.05 

70 0.0042 0.0036 

1.65 

0.0006 

0.24 

0.0025 

0.56 0.03 

100 0.0032  0.0031 

0.95 

0.0001 

0.14 0.0007 

0.64 0.01 

 
 
Table C-6 Experimental Results for Lead Toxicity of Mixed Yeast Sludge at COD Concentration of 5.6 mg/L 
 

Pb(NO

3

)

2

 

(mg/L)

 

OUR

x,t

 

(mg O

2

/mg VSS. h)

 

OUR

x,e

 

(mg O

2

/mg VSS. h)

 

OC 

 (mg O

2

/L)

 

OUR

x,ox

 

(mg O

2

/mg VSS. h)

 

OC/S 

 

 

r

x

 

(mg COD/mg VSS. h)

 

Y

vss

 

(mg VSS/mg COD)

 

µ 

(day

-1

)

 

0.0 0.0031  0.0008 

1.62 

0.0023 

0.29 

0.0080 

0.50 0.09 

2.5 0.0022  0.0007 

1.32 

0.0015 

0.24 

0.0064 

0.53 0.08 

5.0 0.0023  0.0012 

1.31 

0.0011 

0.23 

0.0047 

0.54 0.06 

15.0 0.0017  0.0009 

1.33 

0.0008 

0.24 0.0034 

0.53 0.04 

25.0 0.0013  0.0010 

2.68 

0.0003 

0.48 0.0006 

0.36 0.01 

 
 
 
 
 
 
 
 
 
 
 

background image

 155 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Appendix D 

Membrane Resistance Studies

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 
 

 

 

 

 

 

 

background image

 156 

 

Table D-1 Experimental Data for Determination of Initial Membrane Resistance of   
BMBR Membrane (A = 0.42 m

2

; Pore Size = 0.1 µm; Temperature = 30.7º C) 

 

Trans-membrane Pressure 

Flowrate 

(L/h) 

Permeate Flux 

(L/m

2

.h) 

(mmHg) (kPa) 

14 34 45 

32 76 88 

12 

48 115 138 

18 

57 135 160 

21 

65 155 183 

24 

 

Table D-2 Experimental Data for Determination of Initial Membrane Resistance of YMBR 
Membrane (A = 0.42 m

2

; Pore Size = 0.1 µm; Temperature = 30.7º C) 

 

Trans-membrane Pressure 

Flowrate 

(L/h) 

Permeate Flux 

(L/m

2

.h) 

(mmHg) (kPa) 

15 37 55 

22 52 70 

36 86 110 

14 

49 117 153 

20 

62 147 187 

25 

 

background image

 157 

 

Table D-3 Experimental Data for Determination of Initial Membrane Resistance in YMBR 
after Cleaning  

(a) 

 

Trans-membrane Pressure 

Flowrate 

(L/h) 

Permeate Flux 

(L/m

2

.h) 

(mmHg) (kPa) 

2.29 5.4  8  1.1 
3.92 9.3  19  2.5 
8.05 19.2  32  4.2 

13.10 31.2  36  4.7 

 

(b) 

 

Trans-membrane Pressure 

Flowrate 

(L/h) 

Permeate Flux 

(L/m

2

.h) 

(mmHg) (kPa) 

3.00 7.1  78 10.3 
3.03 7.2  80 10.5 
3.11 7.4  84 11.1 
3.36 8.0  88 11.6 
3.55 8.4  90 11.8 

 

(c) 

 

Trans-membrane Pressure 

Flowrate 

(L/h) 

Permeate Flux 

(L/m

2

.h) 

(mmHg) (kPa) 

0.48 7.1  78 10.3 
0.72 7.2  80 10.5 
1.02 7.4  84 11.1 
1.50 8.0  88 11.6 
2.88 8.4  90 11.8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

background image

 158 

 

 
 

 

Figure D-1 Graphs Showing Initial Membrane Resistance in YMBR after Cleaning 

 

 

 

R

2

 = 0.8687

0

1

2

3

4

5

6

0

5

10

15

20

25

30

35

Flux (L/m

2

.h)

Pressure (kPa)

 

 (a) 

y = 0.7997x - 1.1956

R

2

 = 0.9186

0

2

4

6

8

10

10.0

10.5

11.0

11.5

12.0

Flux (L/m

2

.h)

Pres

sure (k

Pa)

 

(b) 

y = 0.2911x + 6.0323

R

2

 = 0.9239

0

2

4

6

8

10

0

2

4

6

8

Flux (L/m

2

.h)

Pressur

e (kPa)

 

(c) 

background image

 159 

 

Table D-4 Experimental Data for Determination of Initial Membrane Resistance in BMBR 
after Cleaning  

(a) 

 

Trans-membrane Pressure 

Flowrate 

(L/h) 

Permeate Flux 

(L/m

2

.h) 

(mmHg) (kPa) 

2.29 5.4  32  4.2 
3.92 9.3  40  5.3 
8.05 19.2  66  8.7 

13.10 31.2 

80  10.5 

17.02 40.5  162  21.3 

 

(b) 

 

Trans-membrane Pressure 

Flowrate 

(L/h) 

Permeate Flux 

(L/m

2

.h) 

(mmHg) (kPa) 

0.92 2.2  40  5.2 
5.72 13.6  53  7.0 
8.59 20.5  71  9.3 

10.88 25.9 

77  10.1 

16.42 39.1  104  13.7 
19.56 46.6  122  16.1 

 

(c) 

 

Trans-membrane Pressure 

Flowrate 

(L/h) 

Permeate Flux 

(L/m

2

.h) 

(mmHg) (kPa) 

0.6 2.0 

76 10.0 

1.0 3.6 

86 11.3 

4.5 16.3 

106 13.9 

7.1 17.1 

125 16.4 

11.4 41.2 

160 21.1 

 

(d) 

 

Trans-membrane Pressure 

Flowrate 

(L/h) 

Permeate Flux 

(L/m

2

.h) 

(mmHg) (kPa) 

6.00 14.3  64  8.4 
6.18 14.7  68  8.9 
6.48 15.4  70  9.2 
6.78 16.1  72  9.5 
6.90 16.4  76  10.0 

 
 
 
 
 
 

background image

 160 

 

(e) 

 

Trans-membrane Pressure 

Flowrate 

(L/h) 

Permeate Flux 

(L/m

2

.h) 

(mmHg) (kPa) 

1.56 3.7  78 10.4 
4.20 10.0  82  10.9 
8.28 19.7  95  12.7 
8.52 20.3  96  12.8 

11.22 26.7  108  14.4 
19.68 46.9  138  18.4 

 

 

Table D-5 Experimental Data for Determination of Initial Membrane Resistance of 2

nd

 

Membrane in (a) BMBR and (b) YMBR 

(a) 

 

Trans-membrane Pressure 

Flowrate 

(L/h) 

Permeate Flux 

(L/m

2

.h) 

(mmHg) (kPa) 

0.5 1.2  74 

9.9 

1.2 2.9  78 

10.4 

3.2 7.6  82 

10.9 

5.2 12.4  84 

11.2 

9.9 23.6 102 

13.6 

 

(b) 

 

Trans-membrane Pressure 

Flowrate 

(L/h) 

Permeate Flux 

(L/m

2

.h) 

(mmHg) (kPa) 

0.5 1.2  65 

8.7 

1.2 2.9  68 

9.1 

2.0 4.8  72 

9.6 

3.2 7.6  82 

10.9 

5.2 12.4  84 

11.2 

9.9 23.6 102 

13.6 

background image

 161 

 

Figure D-2  

Graphs Showing Initial Membrane Resistance in BMBR after Cleaning 

 

 
 
 

 

 
 
 
 
 

R

2

 = 0.9889

0

5

10

15

20

0.0

10.0

20.0

30.0

40.0

50.0

Flux (L/m

2

.h)

P

re

ss

u

re

 (k

P

a)

 
 

(b) 

 

R

2

 = 0.868

0

5

10

15

20

25

0.0

10.0

20.0

30.0

40.0

50.0

Flux (L/m

2

.h)

Pressure (

k

Pa)

 

(a) 

R

2

 = 0.9514

0

5

10

15

20

25

0.0

20.0

40.0

60.0

Flux (L/m

2

.h)

P

re

ss

u

re

 (k

P

a

)

 

(c) 

R

2

 = 0.9291

8

9

9

10

10

11

14.0

14.5

15.0

15.5

16.0

16.5

17.0

Flux (L/m

2

.h)

Pr

essu

re (kPa)

(d) 

R

2

 = 0.9881

0

5

10

15

20

0.0

10.0

20.0

30.0

40.0

50.0

Flux (L/m

2

.h)

Pressu

re (k

Pa)

 

(e) 

background image

 162 

 

Figure D-3 Graphs Showing Initial Membrane Resistance of 2

nd

 Membrane in (a) BMBR  

  and (b) YMBR 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

y = 0.1568x + 9.7058

R

2

 = 0.9634

0

5

10

15

0.0

5.0

10.0

15.0

20.0

25.0

Permeate Flux (L/m

2

.h)

Trans-me

mbrane Pressu

re  

(k

Pa)

 

(a) 

y = 0.2161x + 8.6241

R

2

 = 0.9671

0

5

10

15

0.0

5.0

10.0

15.0

20.0

25.0

Permeate Flux (L/m

2

.h)

T

ran

s-

me

mb

ra

n

e P

res

su

re

 

(kP

a)

 

(b) 

background image

 163 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix E 

 

MBR without Ammonia Stripping

 

background image

 164 

 

Table E-1 Feed, Reactor and Effluent Characteristics in BMBR 

 

Feed Reactor 

Effluent 

Removal 

(%) 

Day 

HRT 

(h) 

pH 

COD 

(mg/L) 

NH

3

-N 

(mg/L) 

TKN 

(mg/L) 

pH 

DO 

(mg/L) 

MLSS 

(mg/L) 

COD 

Loading 

(kg/m

3

.d) 

F/M 

Ratio 

COD 

(mg/L) 

TKN 

(mg/L) 

NH

3

-N 

(mg/L) 

COD TKN 

24 

7.2 

7,384 

  

  

7.4 

5.3 

12,800 

7.38 

0.58 

  

  

  

  

  

24 

7.3 

7,140 

  

  

7.4 

4.8 

10,980 

7.14 

0.67 

3,094 

  

  

57 

  

24 

7.7 

7,736 

  

  

7.2 

5.6 

 

7.74 

  

2,618 

  

  

66 

  

9  24  7.3 6,752  1,705  1,705 7.0  5.0   

 

6.75 

 

 

3,174  1,319  1,266  53 

26 

16  24  7.3 7,981  1,843  1,852 7.0  6.1  10,950  7.98  0.73  2,777  1,356 

 

 

65 

26 

22  24  7.5 8,331  1,618  1,619 7.0  2.8  11,450  8.33  0.73  3,253  1,230 

 

 

61 

24 

26 

20 

7.4 

6,336 

  

  

7.0 

2.6 

  

7.60 

  

2,611 

  

  

59 

  

28  20  7.3 9,216  1,704  1,967 6.9  3.5 

 

 

11.06 

 

 

4,562  1,336  1,285  50 

35 

35  20  7.0 9,094  1,459  1,653 6.8  2.6  14,167  10.91  0.77  3,375  1,173  1,110  63 

24 

43  20  7.4 7,938  1,278  1,376 7.0  4.2 

 

 

9.53 

 

 

1,883  1,031  955  76 

13 

48  20  7.6 9,281  1,260  1,764 7.2  3.1 

 

 

11.14  0.60  2,936  1,482  1,233  68 

16 

54 

20 

7.6 

9,281 

  

  

6.9 

4.0 

12,600 

11.14 

0.66 

2,618 

  

  

72 

  

61  16  7.4 7,442  1,536  1,796 6.9  3.8 

 

 

11.16  0.68  2,764  1,279  1,221  58 

29 

66  16  7.0 9,322  1,511  1,960 7.1  4.5  11,900  13.98  1.36  2,618  1,384  1,233  72 

29 

68 

16 

7.5 

9,322 

  

  

6.9 

3.1 

12,733 

13.98 

1.10 

3,134 

  

  

66 

  

72  16  7.3 7,282  1,217  1,698 6.8  3.5  12,000  10.92  1.06  1,764  1,324  1,196  76 

22 

78  16  7.8 6,358  1,735  1,837 6.9  3.6 

 

 

9.54 

 

 

3,077  1,246  1,194  52 

25 

83 

16 

7.5 

7,415 

  

  

7.0 

4.2 

13,000 

11.12 

0.99 

2,576 

  

  

65 

  

89  16  7.9 8,529  1,735  1,837 7.0  3.6 

 

 

12.79  1.66  3,282  1,378  1,221  61 

25 

90  16  8.2 8,529  1,232  1,560 6.9  3.3  10,067  12.79  1.47  3,332  1,237  1,176  61 

15 

94 

16 

8.1 

7,759 

  

  

7.0 

3.0 

14,400 

11.64 

0.94 

3,248 

  

  

58 

  

97  16  8.5 8,735 

 

 

1,764 7.0  3.2  9,667  13.10  1.57  3,282  1,482  1,233  62 

16 

104 

16 

8.7 

8,662 

  

  

7.0 

4.6 

13,700 

12.99 

1.10 

3,320 

  

  

62 

  

107  16  8.7 8,662 

 

 

1,796 6.8  4.1 

 

 

12.99  1.00  3,077  1,384  1,185  64 

23 

background image

 165 

 

Feed Reactor 

Effluent 

Removal 

(%) 

Day 

HRT 

(h) 

pH 

COD 

(mg/L) 

NH

3

-N 

(mg/L) 

TKN 

(mg/L) 

pH 

DO 

(mg/L) 

MLSS 

(mg/L) 

COD 

Loading 

(kg/m

3

.d) 

F/M 

Ratio 

COD 

(mg/L) 

TKN 

(mg/L) 

NH

3

-N 

(mg/L) 

COD TKN 

117 

16 

8.2 

9,600 

  

  

7.2 

3.1 

12,333 

14.40 

1.86 

3,282 

  

  

66 

  

119  16  8.4 6,957  2,045  2,253 7.1  4.2  14,067  10.43  0.86  3,140  1,515  1,460  55 

35 

124  16  8.2 8,735  1,691  2,145 7.3  2.2 

 

 

13.10  1.32  4,182  1,389  1,322  67 

27 

130  16  7.4 7,938  1,778  2,156 7.2  2.6  11,600  11.91  1.31  3,653  1,497  1,439  58 

31 

136  16  7.4 7,938  1,106  1,613 7.0  3.2  11,567  11.91  1.40  3,282  1,258  1,176  59 

22 

141 

16 

8.2 

7,759 

  

  

8.4 

2.3 

10,900 

11.64 

1.07 

3,320 

  

  

57 

  

145  16  7.9 7,646  1,837  2,093 8.3  7.6  13,533  11.47  1.39  3,077  1,581  1,361  60 

24 

150 

12 

8.2 

8,938 

  

2,066 

8.3 

0.6 

10,900 

17.88 

2.41 

3,896 

  

  

56 

  

157  12  8.5 8,000  1,831  2,013 8.8  6.6  12,333  16.00  1.98  4,308  1,753  1,574  46 

13 

164  12  8.1 7,344  1,540  1,837 7.1  1.8  11,567  14.69  1.79  3,830  1,504  1,358  48 

18 

169  12  8.0 7,077  1,590  1,876 7.1  3.8  11,000  14.15  1.56  3,538  1,649  1,355  50 

12 

173  12  8.1 7,076  1,562  1,848 7.0  5.7  10,233  14.15  1.62  3,231  1,658  1,364  54 

10 

176  12  8.1 7,050  1,604  1,893 7.1  4.5  13,533  14.10  1.52  3,450  1,672  1,403  51 

12 

179  12  8.1 7,077  1,649  1,960 7.1  2.8  11,567  14.15  1.90  3,538  1,593  1,324  50 

19 

181  12  8.2 6,962  1,607  1,893 7.1  3.6  11,000  13.92  1.91  3,073  1,688  1,464  56 

11 

 
 
 
 
 
 
 
 
 
 
 
 

background image

 166 

 

Table E-2 Feed, Reactor and Effluent Characteristics in YMBR 

 

Feed Reactor 

Effluent 

Removal 

(%) 

Day 

HRT 

(h) 

pH 

COD 

(mg/L) 

NH

3

-N 

(mg/L) 

TKN 

(mg/L) 

pH 

DO 

(mg/L) 

MLSS 

(mg/L) 

COD 

Loading 

(kg/m

3

.d) 

F/M 

Ratio 

COD 

(mg/L) 

TKN 

(mg/L) 

NH

3

-N 

(mg/L) 

COD TKN 

24 

7.2 

7,384 

  

  

3.6 

5.0 

8,940 

7.38 

0.83 

  

  

  

  

  

24 

7.3 

7,140 

  

  

3.6 

4.0 

11,650 

7.14 

0.61 

3,015 

  

  

58 

  

24 

7.7 

7,736 

  

  

3.6 

7.9 

  

7.74 

  

2,380 

  

  

69 

  

9  24  7.3 6,752  1,705  1,705 3.6  7.3 

 

 

6.75 

 

 

2,460  1,221  1,221  64 

28 

16 

24 

7.3 

7,987 

  

  

3.6 

7.9 

  

7.99 

  

3,015 

  

  

62 

  

17  24  7.5 7,981  1,843  1,852 3.6  7.9  10,820  7.98  0.74  3,094  1,336  1,285  61 

28 

22 

24 

7.5 

8,331 

1,618 

1,619 

3.6 

8.0 

  

8.33 

  

3,332 

  

  

60 

  

24 

24 

7.4 

8,504 

  

  

3.6 

8.0 

  

8.50 

  

3,099 

  

  

64 

  

26 

20 

7.3 

6,336 

  

  

3.6 

7.6 

  

7.60 

  

3,456 

  

  

  

  

28  20  7.0 9,216  1,704  1,967 3.6  3.9 

 

 

11.06 

 

 

3,295  1,611  1,515  64 

18 

35 20 7.4 

9,094 1,459 1,653 

3.6 4.0 12,180 10.91 1.04 3,563 1,322 1,252 61  20 

40 

20 

7.6 

9,744 

  

  

3.6 

4.2 

9,720 

11.69 

1.40 

2,959 

  

  

70 

  

43 

20 

7.6 

7,938 

1,278 

1,376 

3.6 

4.8 

  

9.53 

  

3,286 

  

  

59 

  

48  20  7.0 9,281  1,260  1,764 3.6  4.2 

 

 

11.14  0.78  3,563  1,159  1,036  62 

34 

54 

20 

6.7 

9,281 

  

1,449 

3.6 

4.9 

11,867 

11.14 

0.87 

  

1,002 

918 

  

31 

57 

20 

7.4 

8,372 

  

  

3.6 

4.6 

10,567 

7.64 

0.95 

2,489 

  

  

61 

  

61  16  7.0 7,442  1,536  1,796 3.6  4.0 

 

 

11.16  0.62  2,800  1,226  823 

62 

32 

66 

16 

7.5 

9,322 

  

  

3.6 

3.4 

  

13.98 

1.02 

2,698 

  

  

71 

  

68 16 7.5 

9,322 1,511 1,960 

3.6 3.4 13,033 13.98 1.24 2,579 1,567 1,484 72  20 

72 16 7.3 

7,282 1,217 1,698 

3.6 3.5 11,700 10.92 1.08 1,862 1,378 1,221 74  19 

78 

16 

7.8 

6,358 

  

1,837 

3.6 

3.6 

12,433 

9.54 

0.89 

  

1,345 

1,284 

  

27 

84 16 7.5 

7,415 1,735 1,837 

3.6 4.6 11,600 11.12 1.11 2,831 1,194 1,194 62  35 

88 16 7.9 

7,415 1,232 1,560 

3.6 3.5 11,933 11.12 1.08 2,576 1,322 1,106 65  15 

90 

16 

8.2 

8,529 

1,232 

1,560 

3.6 

2.0 

10,367 

12.79 

1.43 

2,142 

  

  

75 

  

94 

16 

8.1 

7,759 

  

  

3.6 

2.0 

13,067 

11.64 

1.03 

3,104 

  

  

60 

  

background image

 167 

 

Feed Reactor 

Effluent 

Removal 

(%) 

Day 

HRT 

(h) 

pH 

COD 

(mg/L) 

NH

3

-N 

(mg/L) 

TKN 

(mg/L) 

pH 

DO 

(mg/L) 

MLSS 

(mg/L) 

COD 

Loading 

(kg/m

3

.d) 

F/M 

Ratio 

COD 

(mg/L) 

TKN 

(mg/L) 

NH

3

-N 

(mg/L) 

COD TKN 

104 

16 

8.5 

8,662 

  

  

3.6 

3.3 

10,000 

12.99 

1.51 

3,176 

  

  

63 

  

107 16 8.7 

8,662   

  1,796 

3.6 4.6 12,600 12.99 1.20 3,409 1,279 1,176 61  29 

117 

16 

8.7 

9,600 

  

  

3.6 

4.9 

11,367 

14.40 

1.47 

3,757 

  

  

61 

  

119  16  8.2 6,957  2,045  2,253 3.6  3.7  12,333  10.43  0.98  2,769  1,440  818 

60 

36 

124  16  8.4 8,735  1,691  2,145 3.6  4.7  9,533  13.10  1.59  2,470  1,389  1,221  72 

35 

130 16 8.2 

7,938 1,778 2,156 

3.6 3.5 12,700 11.91 1.09 1,985 1,482 1,110 75  31 

136 

16 

7.4 

7,938 

1,106 

1,613 

3.6 

4.8 

11,367 

11.91 

1.22 

2,483 

  

  

69 

  

141  16  7.4 7,759 

 

 

1,613 3.6  3.2  12,700  11.64  1.06  3,070  1,313 

 

 

60 

19 

148 

16 

8.2 

7,646 

  

1,854 

3.6 

5.2 

10,233 

15.29 

1.49 

2,146 

  

  

72 

  

150 12 7.9 

8,938   

  2,066 

3.6 3.5 10,900 17.88 1.64 3,320 1,581 1,358 63  23 

157 

12 

8.2 

8,000 

1,831 

2,013 

3.6 

0.4 

11,867 

16.00 

1.35 

3,231 

  

  

60 

  

160 12 8.5 

8,566   

  2,093 

3.6 6.9 10,833 17.13 1.58 4,273 1,798 1,610 50  11 

164 12 8.1 

7,344 1,540 1,837 

3.6 2.5 11,567 14.69 1.27 3,515 1,456 1,331 52  15 

169 12 8.0 

7,077 1,590 1,876 

3.6 6.1 11,867 14.15 1.19 3,385 1,504 1,352 52  20 

173 12 8.1 

7,076 1,562 1,848 

3.6 2.6 11,900 14.15 1.19 3,038 1,512 1,361 57  18 

176 12 8.1 

7,050 1,604 1,893 

3.6 3.2 13,533 14.10 1.04 3,300 1,599 1,375 53  16 

179 12 8.1 

7,077 1,649 1,960 

3.6 6.7 10,600 10.62 1.16 2,769 1,576 1,369 61  20 

181 

12 

8.2 

6,962 

1,607 

1,893 

3.6 

3.9 

11,867 

10.44 

1.02 

3,231 

  

  

54 

  

 
 

background image

 168 

 

 
 
 

 

Figure E-1 Influent and Effluent TKN Concentration in (a) YMBR and (b) BMBR 

 
 
 

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

0

1 6

3 2

4 8

6 4

8 0

9 6

1 1 2 1 2 8 1 4 4 1 6 0 1 7 6

T im e   (d a ys )

TK

N

 (

m

g

/L)

1 0

1 2

1 4

1 6

1 8

2 0

2 2

2 4

HR

T

 (

h

)

Influe nt T K N

E fflue nt T K N

H R T

 

0

500

1000

1500

2000

2500

1

17

35

57

78

104

130

157

176

Time (days)

TKN (m

g/L)  

  

10

12

14

16

18

20

22

24

HRT (h

)

 

 

(a) 

 

0

500

1000

1500

2000

2500

0

16 32 48 64 80 96 112 128 144 160 176

Time (days)

T

KN (

m

g

/L

)

10

12

14

16

18

20

22

24

HR

T

 (

h

)

Influent TKN

Effluent TKN

HRT

(b) 

background image

 169 

 

Table E-3 Variation in TMP with Time in BMBR 

 

Day 

HRT (h) 

TMP (kPa) 

Day 

HRT (h) 

TMP (kPa) 

1 24 7.37 

120 

16 

16.84 

5 24 9.21 

122 

16 

17.11 

10 24  7.89 

123 

16 31.58 

15 24  6.84 

124 

16 56.58 

20 24  6.32 

125 

16 65.79 

25 24  6.84 

129 

16 11.84 

30 20  9.47 

132 

16 12.37 

35 20  8.16 

135 

16 15.79 

40 20  8.42 

136 

16 19.21 

45 20  9.21 

137 

16 36.84 

50 20 10.00 

138 

16 44.47 

55 20 11.32 

141 

16 56.32 

57 20 11.05 

142 

16 65.79 

58 20 14.47 

143 

16 8.95 

60 20 13.42 

149 

16 15.46 

61 16 17.89 

150 

12 18.93 

62 16 18.68 

151 

12 24.53 

65 16  7.63 

152 

12 26.66 

69 16  7.89 

153 

12 29.86 

72 16 11.84 

158 

12 33.59 

77 16 12.11 

159 

12 38.39 

81 16 13.68 

160 

12 35.19 

82 16 17.11 

161 

12 34.12 

85 16 22.11 

162 

12 34.12 

89 16  7.89 

163 

12 36.25 

90 16 10.53 

164 

12 38.12 

91 16 10.92 

165 

12 37.85 

96 16 11.45 

166 

12 43.19 

100 16  11.84 

169 

12 12.00 

103 16  13.16 

173 

12 13.06 

104 16  15.79 

177 

12 13.06 

114 16  15.79 

181 

12 15.20 

 

 
 
 
 
 
 
 
 
 
 

background image

 170 

 

Table E-4 Variation in TMP with Time in YMBR 

 

Day 

HRT (h) 

TMP (kPa) 

Day 

HRT (h) 

TMP (kPa) 

1 24  9.3 91 

16 6.91 

5 24  9.3 96 

16 6.91 

10 24  7.4 100 

16 7.58 

15 24  9.0 103 

16 8.24 

21 24  8.0 104 

16 8.24 

25 24  8.2 107 

16 10.63 

30 20  8.0 108 

16 13.29 

35 20  7.4 109 

16 18.61 

45 20  6.9 110 

16 20.20 

50 20  7.2 114 

16 6.64 

55 20  7.7 122 

16 5.32 

57 20  9.0 129 

16 5.32 

58 20  8.4 132 

16 8.77 

60 20  8.8 137 

16 9.57 

61 16  8.8 143 

16 10.90 

62 16  8.4 153 

12 13.02 

69 16  7.0 159 

12 17.54 

72 16  8.2 160 

12 25.25 

77 16  6.6 161 

12 27.91 

81 16  8.0 162 

12 28.17 

82 16  8.0 163 

12 28.57 

85 16  8.0 166 

12 7.18 

88 16  14.6 

173 

12 10.90 

89 16  18.6 

178 

12 11.43 

90 16  20.2 

181 

12 10.37 

 

background image

 171 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix F 

 

Ammonia Stripping Studies 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

background image

 172 

 

Table F-1 Ammonia Removal Efficiency in Leachate with Varying pH 
 

Ammonia Stripping (%) 

Initial Concentration 

(mg/L) 

pH 9 

pH 10 

pH 11 

pH 12 

1,106 16 

24 

38 

43 

1,366 23 

32 

45 

50 

1,380 25 

30 

42 

47 

 
Table F-2 Experimental Data of Ammonia Concentration at a pH from 11 to 12 of 
Leachate as Functions of Contact Time and Velocity Gradient (Run I: 1,106 mg/L) 
 

Contact Time  

2 h 

4 h 

6 h 

Velocity 

Gradient 

(s

-1

NH

3

 

(mg/L) 

Removal 

(%) 

NH

3

 

(mg/L) 

Removal 

(%) 

NH

3

 

(mg/L) 

Removal 

(%) 

0  767 30 602 45 543 51 

1,530 

378 66 174 84  73  93 

2,850 

298 73 60 95 25 98 

4,330 

269 76 56 95 20 98 

 
Table F-3 Experimental Data of Ammonia Concentration at a pH from 11 to 12 of 
Leachate as Functions of Contact Time and Velocity Gradient (Run II: 1,366 mg/L) 
 

Contact Time 

2 h 

4 h 

6 h 

Velocity 

Gradient 

(s

-1

NH

3

 

(mg/L) 

Removal 

(%) 

NH

3

 

(mg/L) 

Removal 

(%) 

NH

3

 

(mg/L) 

Removal 

(%) 

0  986 28 829 39 689 50 

1,530 

459 66 190 86 106 92 

2,850 

353 74 98 93 34 98 

4,330 

325 76 78 94 28 98 

 
Table F-4 Experimental Data of Ammonia Concentration at a pH from 11 to 12 of 
Leachate as Functions of Contact Time and Velocity Gradient (Run III: 1,380 mg/L) 
 

Contact Time  

2 h 

4 h 

6 h 

Velocity 

Gradient 

(s

-1

NH

3

 

(mg/L) 

Removal 

(%) 

NH

3

 

(mg/L) 

Removal 

(%) 

NH

3

 

(mg/L) 

Removal 

(%) 

0  994 28 876 37 736 47 

1,530 

540 61 216 84 160 88 

2,850 

434 69 165 88  59  96 

4,330 

406 71 148 89  53  96 

 

background image

 173 

 

Table F-5 Pilot Scale Study on Ammonia Stripping with Varying Contact Time (Reactor 
Volume 40 L, pH 11-12, Velocity Gradient 2,850 s

-1

) 

 

Contact Time 

1 h 

2 h 

3 h 

4 h 

5 h 

Initial 

Concentration 

(mg/L) 

NH

3

 

(mg/L) 

(%) 

NH

3

 

(mg/L) 

(%)

NH

3

 

(mg/L) 

(%) 

NH

3

 

(mg/L) 

(%) 

NH

3

 

(mg/L) 

(%) 

1,160 

722 38 487 58 235  80 202 83 104 91 

1,473 

902 22 675 42 375  68 266 77 140 88 

* R – Ammonia Removal Efficiency 

 
 

Table F-6 Verification of the Optimum Parameters for the Ammonia Stripping Studies 
with Varying Ammonia Concentration in the Leachate (Velocity Gradient: 2,850 s

-1

, pH: 

11-12, Contact Time: 5 h) 

 

Ammonia Concentration (mg/L) 

Sample No. 

Initial Final 

Removal Efficiency (%) 

1 1,473 

140 

90 

2 1,546 

148 

91 

3 1,310 

151 

88 

4 1,753 

218 

88 

5 1,546 

241 

84 

6 1,414 

227 

84 

7 1,358 

202 

85 

8 1,277 

210 

84 

9 1,369 

218 

84 

10 1,442 

238 

83 

11 1,389 

179 

87 

12 1,490 

162 

89 

13 1,532 

218 

86 

14 1,473 

140 

90 

15 1,546 

148 

91 

Average 1,455 

196 

86 

 
 

background image

 174 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Appendix G 

 

MBR with Ammonia Stripping 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

background image

 175 

 

Table G-1 Feed, Reactor and Effluent Characteristics in BMBR at 16 h HRT 
 

Feed Reactor Effluent 

Removal 

(%) 

Day 

COD 

(mg/L) 

TKN

Raw 

(mg/L) 

TKN

Stripp

 

(mg/L) 

MLSS 

(mg/L) 

COD Loading 

(kg/m

3

.d) 

F/M Ratio 

COD 

(mg/L) 

TKN 

(mg/L) 

NH

3

-N 

(mg/L) 

COD TKN 

7,538 

1,686   11,567 11.31 1.09 

2,769 

 

 

   

6,987 

1,473   11,567 10.48 1.08 

2,430 

403 252 65 

73 

14 

8,467 

1,739   11,000 12.70 1.52 

2,780 

454 367 67 

74 

16 

8,930 

1,957   11,567 13.40 1.21 

2,791 

456 342 69 

77 

19 

8,964 

1,828   11,000 13.45 1.21 

2,747 

462 347 69 

75 

23 7,459  1,764 

445 

11,000 

11.19 

1.02  2,634  473 

347 

65 

73 

27 7,167  1,614 

445 

12,667 

10.75 

0.85  1,933  353 

227 

73 

78 

33 7,459  1,764 

451 

10,750 

11.19 

1.04  2,270  347 

227 

70 

80 

39 7,277  1,557 

213 

10,500 

10.92 

1.04  2,143 

 

 

71 

 

48 8,269  1,473 

157 

11,100 

12.40 

1.12  2,742 

 

 

67 

 

57 8,195  1,414 

204 

11,850 

12.29 

0.82  2,500  255 

168 

69 

82 

62 7,277  1,322 

179 

11,700 

10.92 

0.93  1,677  241 

210 

77 

82 

67 6,857 

 

 

12,450 

10.29 

0.62  1,739 

 

 

75 

 

69 9,231  1,982 

344 

12,050 

13.85 

1.15  2,571  322 

210 

72 

84 

71 9,231 

 

 

11,850 

13.85 

1.17  2,031 

 

 

78 

 

77 8,432  1,834 

350 

11,100 

12.65 

1.14  1,500  188 

140 

82 

90 

84 7,000  1,912 

395 

10,450 

10.50 

1.00  1,667  272 

210 

76 

86 

92 7,000  1,789 

372 

11,600 

10.50 

0.91  2,000  238 

168 

71 

87 

99 6,733  1,582 

333 

12,050 

10.10 

0.50  1,833  224 

140 

73 

86 

108 7,167  1,646 

358 

10,300 

10.75 

0.51 

1,933 

232 

168 

73 

86 

114 7,784  1,593 

330 

11,700 

11.68 

1.19 

2,060 

280 

210 

74 

82 

120 7,162  1,764 

325 

10,550 

10.74 

1.09 

1,709 

168 

137 

76 

90 

126 7,084 

 

 

11,700 

10.63 

1.12 

2,234 

 

 

68 

 

133 7,167 

 

 

11,750 

10.75 

0.90 

1,870 

 

 

74 

 

140 6,857  1,795 

288 

11,750 

10.29 

0.70 

2,026 

244 

157 

70 

86 

147 7,040  1,879 

249 

10,600 

10.56 

0.79 

2,080 

216 

151 

70 

89 

153 7,610  

 

10,750 

11.42 

0.84 

1,538 

 

 

80 

 

159 7,667  1,876 

311 

11,800 

11.50 

0.77 

2,026 

187 

145 

74 

90 

170 7,720 

 

 

10,750 

11.58 

0.64 

1,538 

 

 

80 

 

background image

 176 

 

Table G-2 Feed, Reactor and Effluent Characteristics in BMBR at 24 h HRT 
 

Feed Reactor Effluent 

Removal 

(%) 

Day 

COD 

(mg/L) 

TKN

Raw 

(mg/L) 

TKN

Stripp

 

(mg/L) 

MLSS 

(mg/L) 

COD Loading 

(kg/m

3

.d) 

F/M 

Ratio 

COD 

(mg/L) 

TKN 

(mg/L) 

NH

3

-N 

(mg/L) 

COD TKN 

1 7,655  1,646 

358 

11,300 

7.66 

0.68  1,862  232 

168 

76 

86 

7,500 

  

  

12,550 

7.50 

0.60 

  

  

  

  

  

13 8,262  1,574 

342 

12,050 

8.26 

0.69  1,655  151 

126 

80 

90 

14 

7,655 

  

  

10,133 

7.66 

0.76 

1,742 

  

  

77 

  

17 8,129  1,582 

333 

11,850 

8.13 

0.69  2,032  224 

140 

75 

86 

24 

8,262 

  

  

12,750 

8.26 

0.65 

  

  

  

  

  

30 

7,655 

2,041 

361 

11,600 

7.66 

0.66 

  

162 

109 

  

92 

35 

8,129 

  

  

13,467 

8.13 

0.60 

  

  

  

  

  

42 9,322  1,876 

311 

12,750 

9.32 

0.73  2,531  216 

157 

73 

88 

46 

7,500 

  

  

12,033 

7.50 

0.62 

  

  

  

  

  

49 

9,223 

  

  

11,300 

9.22 

0.82 

2,344 

  

  

75 

  

52 

9,223 

  

  

11,233 

9.22 

0.82 

2,430 

  

  

74 

  

58 

8,852 

  

  

13,467 

8.85 

0.66 

2,164 

  

  

76 

  

 

 
 
 
 
 
 
 
 
 
 
 
 

background image

 177 

 

Table G-3 Feed, Reactor and Effluent Characteristics in YMBR at 16 h HRT 
 

Feed Reactor Effluent 

Removal 

(%) 

Day 

COD 

(mg/L) 

TKN

Raw 

(mg/L) 

TKN

Stripp

 

(mg/L) 

MLSS 

(mg/L) 

COD Loading 

(kg/m

3

.d) 

F/M Ratio 

COD 

(mg/L) 

TKN 

(mg/L) 

NH

3

-N 

(mg/L) 

COD TKN 

7,538 

1,686 

  

10,833 

11.31 

2.08 

2,769 

  

  

  

  

6,987 

1,473 

  

10,933 

10.48 

2.01 

2,127 

  

  

70 

  

14  

1,739 

 

 

12,567 

14.05 

0.93 

2,780 

521 

395 

70 

70 

16 8,930  1,957 

 

 

10,933 

13.40 

1.05  2,791  448 

316 

69 

77 

19 8,964  1,828 

 

 

11,250 

13.45 

1.19  2,747  459 

333 

69 

75 

23 7,459  1,764 

445 

12,267 

11.19 

1.06  2,195  353 

238 

71 

80 

27 7,167  1,614 

445 

10,850 

10.75 

0.96  1,864  322 

210 

74 

80 

33 7,459  1,764 

451 

11,600 

11.19 

0.96  2,571  339 

221 

66 

81 

39 

7,459 

1,557 

213 

10,750 

11.19 

1.24 

2,261 

  

  

70 

  

48 8,269  1,473 

157 

12,100 

12.40 

1.02  2,714  126 

115 

67 

91 

57 8,195  1,414 

204 

12,400 

12.29 

0.66  2,667  233 

199 

67 

84 

62 7,277  1,322 

179 

10,900 

10.92 

1.06  1,223  193 

185 

83 

85 

67 

6,514 

  

  

11,250 

9.77 

0.92 

1,739 

  

  

73 

  

69 9,231  1,982 

344 

11,700 

13.85 

1.25  2,571  274 

184 

72 

86 

71 

9,231 

  

  

12,100 

13.85 

1.10 

1,846 

  

  

80 

  

77 8,432  1,834 

350 

10,900 

12.65 

1.27  2,250  241 

146 

73 

87 

84 7,000  1,912 

395 

11,050 

10.50 

0.91  1,743  224 

185 

75 

88 

92 7,000  1,789 

372 

11,750 

10.50 

0.95  2,167  216 

199 

69 

88 

99 6,733  1,582 

333 

11,600 

10.10 

0.75  2,000  277 

146 

70 

82 

108 7,167  1,646 

358 

12,200 

10.75 

0.99 

2,100 

210 

199 

71 

87 

114 7,784  1,593 

330 

11,950 

11.68 

1.23 

2,166 

232 

185 

72 

85 

120 7,162  1,764 

325 

11,400 

10.74 

1.09 

1,565 

221 

143 

78 

87 

126 

7,084 

  

  

11,750 

10.63 

0.69 

1,940 

  

  

73 

  

133 

7,167 

  

  

11,950 

10.75 

0.90 

1,558 

  

  

78 

  

140 6,857  1,795 

288 

11,950 

10.29 

0.63 

2,026 

252 

162 

70 

86 

147 7,040  1,879 

249 

11,550 

10.56 

0.73 

1,920 

232 

148 

73 

88 

153 

7,610 

  

  

11,600 

11.42 

0.98 

1,846 

  

  

76 

  

159 7,667  1,876 

311 

11,750 

11.50 

1.04 

2,054 

220 

150 

73 

88 

170 

7,720 

  

  

11,600 

11.58 

0.66 

1,846 

  

  

76 

  

  

  

background image

 178 

 

Table G-4 Feed, Reactor and Effluent Characteristics in YMBR at 24 h HRT 
 

Feed Reactor Effluent 

Removal 

(%) 

Day 

COD 

(mg/L) 

TKN

Raw 

(mg/L) 

TKN

Stripp

 

(mg/L) 

MLSS 

(mg/L) 

COD Loading 

(kg/m

3

.d) 

F/M 

Ratio 

COD 

(mg/L) 

TKN 

(mg/L) 

NH

3

-N 

(mg/L) 

COD TKN 

1 7,655  1,646 

358 

11,550 

7.66 

0.66  1,742  232 

148 

77 

86 

7,500 

  

  

11,400 

7.50 

0.66 

  

 

 

 

 

13 8,262  1,574 

342 

12,200 

8.26 

0.68  1,655  137 

109 

80 

91 

14 

7,655 

  

  

12,933 

7.66 

0.59 

1,655 

 

 

78 

 

17 8,129  1,582 

333 

11,750 

8.13 

0.69  1,935  216 

146 

76 

86 

24 

7,655 

  

  

12,650 

7.66 

0.61 

  

 

 

 

 

30 7,655  2,041 

361 

11,550 

7.66 

0.66 

 

 

157 

115 

 

92 

35 

8,129 

  

  

12,200 

8.13 

0.67 

  

 

 

 

 

42 9,322  1,876 

311 

12,333 

9.32 

0.76  2,719  221 

143 

71 

88 

46 

7,500 

  

  

11,133 

7.50 

0.67 

2,164 

 

 

71 

 

49 

9,223 

  

  

11,550 

9.22 

0.80 

  

 

 

 

 

52 

9,223 

  

  

12,333 

9.22 

0.75 

2,430 

 

 

74 

 

58 

8,852 

  

  

12,200 

8.85 

0.73 

2,066 

 

 

77 

 

 
 

background image

 179 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix H 

 

Other Studies

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

background image

 180 

 

Table H-1 20 Days BOD of Raw Leachate, Stripped Leachate, Bacterial and Yeast 
Effluents 
 

BOD (mg/L) 

Day 

Raw 

Leachate 

Stripped Leachate 

YMBR 

Effluent 

BMBR 

Effluent 

1 2,080 

240 10 

2 2,640 

440 15 

10 

3 3,040 

640 15 

10 

4 3,280 

1,000 

20 

15 

5 3,520 

1,120 

20 

15 

6 3,760 

1,200 

20 

20 

7 4,080 

1,280 

25 

20 

8 4,240 

1,480 

30 

25 

9 4,480 

1,920 

35 

25 

10 4,560 

2,040 35 

25 

11 4,720 

2,200 40 

25 

12 4,800 

2,280 45 

25 

13 4,800 

2,400 50 

25 

14 4,960 

2,440 60 

30 

15 4,960 

2,400 65 

30 

16 5,040 

2,400 70 

35 

17 5,120 

2,400 75 

35 

18 5,120 

2,400 75 

35 

19 5,200 

2,400 80 

35 

20 5,280 

2,400 80 

40 

COD (mg/L) 

7,742 

6,581 

1,839 

1,742 

BOD

5

 (mg/L) 

3,520 

1,120 

20 

15 

BOD

5

/COD 0.45 

0.17 

0.01 0.01 

BOD

10

/COD 0.59 

0.31 

0.02 0.01 

BOD

15

/COD 0.64 

0.36 

0.04 0.02 

BOD

20

/COD 0.68 

0.36 

0.04 0.02 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

background image

 181 

 

Table H-2 Membrane Resistance of the Membrane Used for MWCO Studies 
 

MW 50k 

MW 10k 

MW 5k 

Pressure 

(kPa) 

Flowrate  

(L/h) 

 

Permeate 

Flux 

(L/m

2

.h) 

Flowrate 

(L/h) 

 

Permeate 

Flux 

(L/m

2

.h) 

Flowrate  

(L/h) 

 

Permeate 

Flux 

(L/m

2

.h) 

101  0.53 117.78 0.31 68.02  - 

202 0.79 174.68 

0.65 

143.18 

0.18 40.76 

303 1.13 249.78 

0.99 

217.29 

0.26 57.70 

404 1.32 290.47 

1.31 

288.22 

0.36 79.93 

505 1.52 335.47 

1.42 

313.90 

0.45 99.25 

Membrane 
Resistance 

8.16 x 10

12

 m

-1

 

6.99 x 10

12

 m

-1

 

1.86 x 10

13

 m

-1

 

 

 

 

Figure H-1 Determination of Initial Membrane Resistance of Flat Sheet Membrane  

       (A = 45.34 cm

2

 
 
 
 
 

0

200

400

600

0

200

400

Permeate Flux (L/m

2

.h)

P

re

ssu

re

 (k

P

a)

MW 10k

0

200

400

600

0

100

200

300

400

Permeate Flux (L/m

2

.h)

P

re

ssu

re

 (k

P

a)

MW 50k

0

100

200

300

400

500

600

0

50

100

150

Permeate Flux (L/m

2

.h)

Pres

sure (k

Pa)

MW 5k

background image

 182 

 

Table H-3 COD Fraction of Raw Leachate, Stripped Leachate and Yeast and Bacterial 
Membrane Bioreactor Effluents at Different Molecular Weight 

   

Raw Leachate 

Stripped Leachate

Yeast Effluent 

Bacterial 

Effluent 

Molecular 

Weight 

 

COD 

(mg/L) 

COD 

(%) 

COD 

(mg/L) 

COD 

(%) 

COD 

(mg/L)

COD 

(%) 

COD 

(mg/L) 

COD 

(%) 

MW>50k  6,445 

87 

3,643 65  54  3 127 7 

MW 

10k-50k 401  5  359  6  286 14 230 12 

MW 

5k-10k  590  8  606  11  529 26 588 31 

MW<5k 

nd  nd  970  17 1,093 54 998 53 

 
 

Table H-4 COD and BOD Fraction of Raw Leachate, Stripped Leachate and Yeast and 
Bacterial Membrane Bioreactor Effluents at Different Molecular Weight 

 

Raw Leachate 

Stripped Leachate

Yeast Effluent 

Bacterial 

Effluent 

Molecular 

Weight 

 

COD 

(mg/L) 

COD 

(%) 

COD 

(mg/L) 

COD 

(%) 

COD 

(mg/L)

COD 

(%) 

COD 

(mg/L) 

COD 

(%) 

MW>50k  6,916 91 4,732 72 123  7  48  3 
MW 

10k-50k 

215 3 178 3 175 9 178 9 

MW 

5k-10k 

492 6 456 7 353 

19 

355 

19 

MW<5k 

nd  nd 1,196 18 1,233 65 1,286 69 

 
 

Raw Leachate 

Stripped Leachate 

Yeast Effluent 

Bacterial 

Effluent 

Molecular 

Weight 

 

BOD 

(mg/L) 

BOD 

(%) 

BOD 

(mg/L) 

BOD 

(%) 

BOD 

(mg/L)

BOD 

(%) 

BOD 

(mg/L) 

BOD 

(%) 

MW>50k  3,032 

88 1,149 72 12 10  6  4 

MW 

10k-50k 

91 3  57  4 6 6 38 

23 

MW 5k-10k 

328 

10 

115 

11 

10 

13 

MW<5k 

nd nd  274  17 86 74 108 65 

 
 
Table H-5 Chemical Cost for the Yeast and Bacterial Membrane Bioreactor without 
Ammonia Stripping 

 

Sample 

  

pH 

  

H

2

SO

4

 

(L/m

3

NaOH* 

(kg/m

3

Chemical Cost 

(Baht/m

3

Raw Leachate  

7.8 

 - 

 - 

 - 

YMBR Effluent 

3.6 

5.6 (pH 3.6) 

0.5 (pH 7.0) 

93 

BMBR Effluent 

7.5 

0.3 (pH 7.5) 

 - 

   Note * Increase in pH of YMBR effluent 
 
 
 
 

background image

 183 

 

Table H-6 Chemical Cost for the Yeast and Bacterial Membrane Bioreactor with Ammonia 
Stripping 
 

Sample 

  

pH 

  

NaOH 

(kg/m

3

 

H

2

SO

4

 

(L/m

3

 

NaOH* 

(kg/m

3

 

Chemical 

Cost 

(Baht/m

3

Raw Leachate  

7.8 

 - 

 - 

 - 

 - 

Stripped Leachate 

11.5  15.25 (pH 11.5)

458 

YMBR Effluent 

3.6 

13.5 (pH 3.6)

0.5 (pH 7.0) 

204 

BMBR Effluent 

7.5 

7.7 (pH 7.5) 

107 

Note * Increase in pH of YMBR effluent