II. 1.4
Hel o zasobie masy m=2[kg] traktowany tak jak gaz doskonały pracuje w obiegu
prawo bieżnym złożonym z następujących odwracalnych przemian
termodynamicznych: izobarycznej, izochorycznej i izotermicznej rozgęszczania
helu. Prace bezwzględne objętościowe oraz przyrosty ilości ciepła przemian
mają odpowiednio następujące wartości: izobarycznej L
1‐2
=‐4mRT
2
=‐
6.65549*10
6
[J], ΔQ
1‐2
=‐4(Kr/k‐1)m T
2
= ‐1.67396*10
7
[J], izochorycznej L
2‐3
=0,
ΔQ
2‐3
=‐4(R/k‐1)m T
2
= ‐1.00841*10
7
[J], izotermicznej
L
3‐1
=5mRT
2
ln5=13.3895*10
6
[J], ΔQ
3‐1
=5mR T
2
ln5= 1,33895*10
7
[J]. Indywidualna
stała gazowa helu R=2079,01 [J/kg*K], wykładnik izentropy k=1.66,
temperatura T
2
= 400.16 [K]. Obliczyć moduły pracy zgęszczania i rozgęszczania
helu w obiegu, moduły przyrostów ilości ciepła doprowadzonego i
wyprowadzonego z obiegu, pracę obiegu, ciepło obiegu, sprawność teoretyczną
obiegu.
Dane:
m=2[kg]
T
2
= 400.16 [K]
R = 2079.01 [J/kg*K]
k = 1.66
1.Tabela zestawienia danych oraz wyników obliczeń.
Para
metr
stanu
Punkt
chara
ktery-
stycz
ny
1
2
3
P
i
[p
1
] p
2
=p
1
p
3
=5p
1
T
i
T
1
=5T
2
[T
2
] T
3
=T
1
=5T
2
V
i
V
1
=5V
2
V
2
=mRT
2
/p
1
V
3
=V
2
L
ij
L
1-2
=-4mRT
2
L
2-3
=0 L
3-1
=5mRT
2
ln5
ΔQ
ij
ΔQ
1-2
=-4(kR/k-1)mT
2
ΔQ
2-3=
4(R/k-1)mT
2
ΔQ
3-1
=5mRT
2
ln5
ΔQ
1‐2
=‐4(kR/k‐1)mT
2
Obliczam pracę obiegu.
L
ob
= |L
ex
| – |L
k
| = |Q
d
| ‐ |Q
w
|
|L
k
| = |‐4mRT
1
|
|L
ex
| = |5mRT
2
ln5|
|L
ob
| = 5mRT
2
ln5 ‐ 4mRT
1
= mRT
2
(5ln5‐4)
ΔQ
ob
= |ΔQ
d
| ‐ |ΔQ
w
|
|ΔQ
d
| = |Q
2‐3
+ ΔQ
3‐1
| = | mRT
2
(5ln5 ‐ (4/k‐1))
dla k>1
|ΔQ
d
| = | mRT
2
(5ln5 ‐ (4/k‐1))
|ΔQ
w
| = |‐4 (kR/k‐1) mT
2
| dla k>1
|ΔQ
w
| = 4 (kR/k‐1) m T
2
Przyrost ilości ilości ciepła obiegu
ΔQ
ob
= mRT
2
(5ln5‐4)
Sprawność teoretyczna obiegu
η
Tob
=
=
= 1 ‐
= 1 ‐
Obliczam wartość pracy i przyrostu ciepła obiegu
L
ob
= ΔQ
ob
= mRT
2
(5ln5‐4) = 2*2079,01*400,16*4,05 = 6,73868*10
7
[J]
Obliczam sprawność obiegu
η
Tob
= 1 ‐
= 1 –
= 0,287554