Analysis of Variance
Model II - example
Width (in μm) of scutum (dorsal shield) of
larvae of the tick Haemaphysalis
leporispalustris in samples from 4
cottontail rabbits
Source:
Sokal and Rohlf, Biometry
host 1
host 2
host 3
host 4
380
350
354
376
376
356
360
344
360
358
362
342
368
376
352
372
372
338
366
374
366
342
372
360
374
366
362
382
350
344
344
342
364
358
351
348
348
host 1
host
2
host 3 host 4
2978
3544
4619
2168
13 309
8
10
13
6
37
372.25
354.4
0
355.31 361.33 359.70
379.50 1278.
4
954.77 1165.3 3778.0
Step 1 – Preliminary
computations
a
1
i
i
n
1
j
ij
Y
i
Y
i
n
i
n
1
j
2
i
ij
Y
Y
37
13309
Step 2 – Sum of squares
73
.
1807
)
7
.
359
33
.
361
(
6
)
7
.
359
31
.
355
(
13
...
)
7
.
359
4
.
354
(
10
)
7
.
359
25
.
372
(
8
Y
n
Y
n
Y
Y
n
groups
among
squares
of
sum
,
SS
2
2
2
2
2
i
n
1
j
ij
i
a
1
i
a
1
i
2
i
i
among
i
Step 2 – Sum of squares
0
.
3778
33
.
1165
77
.
954
40
.
1278
50
.
379
Y
Y
groups
within
squares
of
sum
,
SS
a
1
i
n
1
j
2
i
ij
within
i
Step 2 – Sum of squares
73
.
5585
0
.
3778
73
.
1807
SS
SS
squares
of
sum
total
,
SS
within
among
total
Step 3 – ANOVA table
Source of
variation
df
SS
MS
F
S
Expected
MS
a-1
SS
among
SS
within
SS
total
Y
Y
among groups
1
a
SS
among
within
among
MS
MS
2
A
0
2
n
Y
Y
within groups
a
n
a
1
i
i
a
n
SS
a
1
i
i
within
2
Y
Y
total
1
n
a
1
i
i
Step 3 – ANOVA table
Source of
variation
df
SS
MS
F
S
3
1807.7
3
602.58
5.26
33
3778.0
0
114.48
36
5585.7
3
Y
Y
among groups
Y
Y
within groups
Y
Y
total
Step 4 – Conclusion
The corresponding p-value for calculated F
statistic with [df
among
, df
within
] degrees of
freedom is equal to 0.0045 < 0.05.
We reject the H
0
hypothesis at p < 0.005.
There is a significant added variance
component among hosts for width of scutum
in larval ticks
Step 5 – Estimation of variance
components (model II)
Since sample size differs among groups, no
single value of n is appropriate. We therefore
use an „average” n – this is not the arithmetic
mean of the n
i
’s, but is
009
.
9
6
13
10
8
6
13
10
8
6
13
10
8
1
4
1
n
n
n
1
a
1
n
2
2
2
2
a
1
i
a
1
i
i
a
1
i
2
i
i
0
Step 5 – Estimation of variance
components (model II)
We may estimate the variance component as
follows
2
within
2
A
0
2
among
2
within
2
A
0
2
among
0
within
among
2
A
s
MS
s
n
s
MS
so
MS
E
n
MS
E
because
179
.
54
009
.
9
48
.
114
58
.
602
n
MS
MS
s
Step 5 – Estimation of variance
components (model II)
Percent of variation among groups
%
1
.
32
100
179
.
54
48
.
114
179
.
54
100
s
s
s
2
A
2
2
A
The coefficient of interclass correlation
r
I
=0.321